Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
4 "conversion"
Filter
Filter
Article category
Keywords
Publication year
Authors
Journal Articles
Saxibacter everestensis gen. nov., sp. nov., A Novel Member of the Family Brevibacteriaceae, Isolated from the North Slope of Mount Everest.
Mao Tian, Shiyu Wu, Wei Zhang, Gaosen Zhang, Xue Yu, Yujie Wu, Puchao Jia, Binglin Zhang, Tuo Chen, Guangxiu Liu
J. Microbiol. 2024;62(4):277-284.   Published online March 6, 2024
DOI: https://doi.org/10.1007/s12275-024-00108-1
  • 30 View
  • 0 Download
AbstractAbstract
We isolated and analyzed a novel, Gram-stain-positive, aerobic, rod-shaped, non-motile actinobacterium, designated as strain ZFBP1038(T), from rock sampled on the north slope of Mount Everest. The growth requirements of this strain were 10-37 °C, pH 4-10, and 0-6% (w/v) NaCl. The sole respiratory quinone was MK-9, and the major fatty acids were anteiso-C(15:0) and iso-C(17:0). Peptidoglycan containing meso-diaminopimelic acid, ribose, and glucose were the major cell wall sugars, while polar lipids included diphosphatidyl glycerol, phosphatidyl glycerol, an unidentified phospholipid, and an unidentified glycolipid. A phylogenetic analysis based on 16S rRNA gene sequences showed that strain ZFBP1038(T) has the highest similarity with Spelaeicoccus albus DSM 26341( T) (96.02%). ZFBP1038(T) formed a distinct monophyletic clade within the family Brevibacteriaceae and was distantly related to the genus Spelaeicoccus. The G + C content of strain ZFBP1038(T) was 63.65 mol% and the genome size was 4.05 Mb. Digital DNA-DNA hybridization, average nucleotide identity, and average amino acid identity values between the genomes of strain ZFBP1038(T) and representative reference strains were 19.3-25.2, 68.0-71.0, and 52.8-60.1%, respectively. Phylogenetic, phenotypic, and chemotaxonomic characteristics as well as comparative genome analyses suggested that strain ZFBP1038(T) represents a novel species of a new genus, for which the name Saxibacter gen. nov., sp. nov. was assigned with the type strain Saxibacter everestensis ZFBP1038(T) (= EE 014( T) = GDMCC 1.3024( T) = JCM 35335( T)).
Georgenia faecalis sp. nov. isolated from the faeces of Tibetan antelope
Xiaoxia Wang , Jing Yang , Yuyuan Huang , Xiaomin Wu , Licheng Wang , Limei Han , Sha Li , Huan Li , Xiaoying Fu , Hai Chen , Xiong Zhu
J. Microbiol. 2020;58(9):734-740.   Published online July 24, 2020
DOI: https://doi.org/10.1007/s12275-020-0060-1
  • 15 View
  • 0 Download
  • 2 Citations
AbstractAbstract
Two aerobic, Gram-stain-positive, non-motile, non-sporulating coccoid strains, designated ZLJ0423T and ZLJ0321, were isolated from the faeces of Tibetan antelope (Pantholops hodgsonii). Their optimal temperature, NaCl concentration and pH for growth were 28°C, 0.5% (w/v) NaCl and pH 7.5, respectively. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strains ZLJ0423T and ZLJ0321 were very similar to each other (99.8%) and had a sequence similarity of 97.0% with Georgenia satyanarayanai NBRC 107612T and Georgenia subflava CGMCC 1.12782T. Phylogenomic analysis based on 688 core genes indicated that these strains formed a clade with G. satyanarayanai NBRC 107612T and Georgenia wutianyii Z294T. The predominant cellular fatty acids were anteiso-C15:0, anteiso-C15:1 A and C16:0. The major menaquinone was MK-8(H4). The cell-wall amino acids consisted of alanine, lysine, glycine and aspartic acid, with lysine as the diagnostic diamino acid. Diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, phosphatidylinositol mannosides and two unidentified lipids formed the polar lipid profile. The DNA G + C content of both isolates was 73.9 mol%. The digital DNA–DNA hybridization value between strains ZLJ0423T and ZLJ0321 was 91.2%, but their values with closely related species and other available type strains of the genus Georgenia were lower than the 70% threshold. On the basis of polyphasic taxonomic data, strains ZLJ0423T and ZLJ0321 represent a novel species within the genus Georgenia, for which the name Georgenia faecalis sp. nov. is proposed. The type strain is ZLJ0423T (= CGMCC 1.13681T = JCM 33470T).
Research Support, Non-U.S. Gov't
Microbial Conversion of Major Ginsenoside Rb1 to Pharmaceutically Active Minor Ginsenoside Rd
Myung Kyum Kim , Jun Won Lee , Ki Young Lee , Deok-Chun Yang
J. Microbiol. 2005;43(5):456-462.
DOI: https://doi.org/2275 [pii]
  • 13 View
  • 0 Download
AbstractAbstract
More than seventy strains of aerobic bacteria showing [beta]-glucosidase activity were isolated from a ginseng field, using a newly designed Esculin-R2A agar, and identified by their 16S rRNA gene sequences. Of these microorganisms, twelve strains could convert the major ginsenoside, Rb1, to the pharmaceutically active minor ginsenoside Rd. Three strains, Burkholderia pyrrocinia GP16, Bacillus megaterium GP27 and Sphingomonas echinoides GP50, were phylogenetically studied, and observed to be most potent at converting ginsenoside Rb1 almost completely within 48 h, as shown by TLC and HPLC analyses.
Molecular Cloning and Characterization of cDNA Encoding Immunoglobulin Heavy and Light chain Variable Regions from Four Chicken Monoclonal Antibodies Specific to Surface Antigens of Intestinal Parasite, Eimeria acervulina
Ki Duk Song , Jae Yong Han , Wongi Min , Hyun S. Lillehoj , Sung Won Kim , Jin-Kyoo Kim
J. Microbiol. 2001;39(1):49-55.
  • 17 View
  • 0 Download
AbstractAbstract
We have developed four chicken hybridomas secreting monoclonal antibodies to induce a protective immune response against the chicken disease avian coccidiosis, caused by the intestinal parasite Eimeria acervulina. However, since the amount of antibodies secreted from these hybridomas is too low or sometimes they lost their ability to produce antibodies, the hybridoma method is not satisfactory in the production of large amounts of chicken monoclonal antibodies. To bypass these problems, we applied the antibody engineering technology using polymerase chain reaction. We cloned and determined the sequences of variable domains of the four chicken monoclonal antibodies, namely, 2-1, 5D11, 13C8 and 8C3. The sequences comparison to germline sequences showed that the gene conversion mechanism might contribute to developing diversification of heavy and l-light chains in chicken antibodies. Several pseudogene families regarded as donors in gene conversion were identified at each framework region and the complementarity determining region of l-light chains. In addition, as expected, numerous changes of nucleotide sequences such as nucleotide substitution, insertion and deletion were found predominantly in complementarity determining regions, which are likely to be somatic hypermutations as a result of affinity maturation in antibody-producing cells.

Journal of Microbiology : Journal of Microbiology
TOP