As a microsymbiont of soybean, Bradyrhizobium japonicum
plays an important role in symbiotic nitrogen fixation and
sustainable agriculture. However, the survival of B. japonicum
cells under water-deplete (e.g., drought) and water-replete
(e.g., flood) conditions is a major concern affecting their
nitrogen-fixing ability by establishing the symbiotic relationship
with the host. In this study, we isolated a water stress tolerant
rhizobium from soybean root nodules and tested its
survival under water-deplete conditions. The rhizobium was
identified as Bradyrhizobium japonicum and named strain
5038. Interestingly, both plate counting and live/dead fluorescence
staining assays indicate that a number of viable but
non-culturable cells exist in the culture medium upon the rehydration
process which could cause dilution stress. Bradyrhizobium
japonicum 5038 cells increased production of exopolysaccharide
(EPS) and trehalose when dehydrated, suggesting
that protective responses were stimulated. As expected,
cells reduced their production upon the subsequent rehydration.
To examine differential gene expression of B. japonicum
5038 when exposed to water-deplete and subsequent waterreplete
conditions, whole-genome transcriptional analysis was
performed under 10% relative humidity (RH), and subsequent
100% RH, respectively. A total of 462 differentially expressed
genes (DEGs, > 2.0-fold) were identified under the 10% RH
condition, while 3,776 genes showed differential expression
during the subsequent rehydration (100% RH) process. Genes
involved in signal transduction, inorganic ion transport, energy
production and metabolisms of carbohydrates, amino
acids, and lipids were far more up-regulated than downregulated
in the 10% RH condition. Notably, trehalose biosynthetic
genes (otsAB, treS, and treYZ), genes ligD, oprB, and
a sigma factor rpoH were significantly induced by 10% RH.
Under the subsequent 100% RH condition, genes involved in
transcription, translation, cell membrane regulation, replication
and repair, and protein processing were highly up-regulated.
Interestingly, most of 10%-RH inducible genes displayed
rehydration-repressed, except three genes encoding heat shock
(Hsp20) proteins. Therefore, this study provides molecular
evidence for the switch of gene expression of B. japonicum
cells when encountered the opposite water availability from
water-deplete to water-replete conditions.
Citations
Citations to this article as recorded by
Challenges to rhizobial adaptability in a changing climate: Genetic engineering solutions for stress tolerance Yunjia Zhang, Yee-Shan Ku, Tsz-Yan Cheung, Sau-Shan Cheng, Dawei Xin, Kewin Gombeau, Yizhi Cai, Hon-Ming Lam, Ting-Fung Chan Microbiological Research.2024; 288: 127886. CrossRef
Plant–Soil Microbial Interaction: Differential Adaptations of Beneficial vs. Pathogenic Bacterial and Fungal Communities to Climate-Induced Drought Nataliya Loiko, M. Nazrul Islam Agronomy.2024; 14(9): 1949. CrossRef
Bacteria undergo significant shifts while archaea maintain stability in Pocillopora damicornis under sustained heat stress Huimin Ju, Jian Zhang, Yiyang Zou, Feiyang Xie, Xiaoyu Tang, Si Zhang, Jie Li Environmental Research.2024; 250: 118469. CrossRef
Effect of Nitrogen Application and Cutting Frequency on the Yield and Forage Quality of Alfalfa in Seasonal Cultivation Kun Zhang, Chenyuan Zhai, Yonglong Li, Yan Li, Hui Qu, Yixin Shen Agriculture.2023; 13(5): 1063. CrossRef
Profound Change in Soil Microbial Assembly Process and Co-occurrence Pattern in Co-inoculation of Bradyrhizobium japonicum 5038 and Bacillus aryabhattai MB35-5 on Soybean Yubin Zhao, Dawei Guan, Xu Liu, Gui-Feng Gao, Fangang Meng, Bingqiang Liu, Pengfei Xing, Xin Jiang, Mingchao Ma, Fengming Cao, Li Li, Jun Li Frontiers in Microbiology.2022;[Epub] CrossRef