Journal Articles
- Expression and purification of intracrine human FGF 11 and study of its FGFR-dependent biological activity
-
Kyeong Won Lee , Young Jun An , Janet Lee , Ye-Eun Jung , In Young Ko , Jonghwa Jin , Ji Hoon Park , Won Kyu Lee , Kiweon Cha , Sun-Shin Cha , Jung-Hyun Lee , Hyung-Soon Yim
-
J. Microbiol. 2022;60(11):1086-1094. Published online November 1, 2022
-
DOI: https://doi.org/10.1007/s12275-022-2406-3
-
-
16
View
-
0
Download
-
4
Citations
-
Abstract
- Fibroblast growth factor 11 (FGF11) is one of intracrine FGFs
(iFGFs), which function within cells. Unlike canonical FGFs,
FGF11 remains intracellularly and plays biological roles in
FGF receptor (FGFR)-independent manner. Here, we established
an expression system of recombinant FGF11 proteins
in E. coli and investigated whether the extracellular administration
of FGF11 can activate cellular signaling. Human
FGF11 has two isoforms, FGF11a and FGF11b, depending
on the presence of nuclear localization sequences (NLSs) in
the N-terminus. Because these two isoforms are unstable, we
prepared an FGF11a-Mut by substituting three cysteine residues
in the NLS with serine and FGF11b-ΔC with C-terminal
truncation. The introduction of mutation in the NLS improved
the solubility of FGF11 prepared from E. coli. Exogenous
addition of FGF11b and FGF11b-ΔC to BALB3T3
increased cell proliferation, while FGF11a-Mut exerted no
effect. FGF11b-ΔC showed higher cell proliferation activity
and FGFR signaling than FGF11b. The cell-proliferating activities
of FGF11b and FGF11b-ΔC were blocked by an FGFR1
inhibitor or a recombinant FGFR1, confirming the FGFR1-
dependent extracellular activity of FGF11b. The analysis of
circular dichroism suggested that the C-terminus of FGF11
has an α-helical structure, which may affect its interaction
with FGFR1. These results suggest that the N-and C-terminus
of recombinant FGF11 are involved in the activation of
FGFR1. The above results provide novel insights into the function
and mechanism of FGF11 that may aid the development
of useful ligands for FGFR regulation.
- Genomic and physiological analysis of C50 carotenoid-producing novel Halorubrum ruber sp. nov.
-
Chi Young Hwang , Eui-Sang Cho , Won Jong Rhee , Eunjung Kim , Myung-Ji Seo
-
J. Microbiol. 2022;60(10):1007-1020. Published online August 26, 2022
-
DOI: https://doi.org/10.1007/s12275-022-2173-1
-
-
20
View
-
0
Download
-
6
Citations
-
Abstract
- A novel haloarchaeal species designated as MBLA0099T was
isolated from seawater near Yeongheung Island. Cells were
Gram-negative, non-motile, red-pigmented, and rod-shaped.
They grew at 10–45°C, within pH 5.5–9.0, and between 7.5%
and 30% NaCl concentrations. Cells were able to grow without
Mg2+ and were lysed in distilled water. The size of the
whole-genome and G + C content of DNA was 3.02 Mb and
68.9 mol%, respectively. Phylogenetic analysis shows that
the strain MBLA0099T belongs to the genus Halorubrum.
The average nucleotide and amino acid identity, and in silico
DNA-DNA hybridization values were below the species delineation
threshold. Pan-genomic analysis revealed that 3.2%
of all genes present in strain MBLA0099T were unique to the
strain. The red carotenoid produced by strain MBLA0099T
was subjected to spectrometric and chromatographic analyses
and confirmed to be bacterioruberin as C50 carotenoid.
Mevalonic acid, terpenoid backbone, and carotenoid biosynthesis
pathway were annotated for strain MBLA0099T. The
C50 carotenoid production by strain MBLA0099T was also enhanced
under various stress conditions including relatively
netural pH, high oxidative and salinity conditions. Additionally,
the strain MBLA0099T-derived bacterioruberin showed
the antioxidant activity with EC50 value of 12.29 μg/ml, based
on the evaluation of DPPH free radical scavenging activity.
The present study would be the first report on the identification
of C50 carotenoid from the strain MBLA0099T representing
a novel species of the genus Halorubrum, for which
the name Halorubrum ruber sp. nov. is proposed. The typestrain
used was MBLA0099T (= KCTC 4296T = JCM 34701T).
- Description of Corynebacterium poyangense sp. nov., isolated from the feces of the greater white-fronted geese (Anser albifrons)
-
Qian Liu , Guoying Fan , Kui Wu , Xiangning Bai , Xi Yang , Wentao Song , Shengen Chen , Yanwen Xiong , Haiying Chen
-
J. Microbiol. 2022;60(7):668-677. Published online May 25, 2022
-
DOI: https://doi.org/10.1007/s12275-022-2089-9
-
-
Abstract
- Two novel Gram-positive, non-spore-forming, facultatively
anaerobic, non-motile, and short rods to coccoid strains were
isolated from the feces of the greater white-fronted geese
(Anser albifrons) at Poyang Lake. The 16S rRNA gene sequences
of strains 4H37-19T and 3HC-13 shared highest identity
to that of Corynebacterium uropygiale Iso10T (97.8%).
Phylogenetic and phylogenomic analyses indicated that strains
4H37-19T and 3HC-13 formed an independent clade within
genus Corynebacterium and clustered with Corynebacterium
uropygiale Iso10T. The average nucleotide identity and digital
DNA-DNA hybridization value between strains 4H37-19T and
3HC-13 and members within genus Corynebacterium were
all below 95% and 70%, respectively. The genomic G + C content
of strains 4H37-19T and 3HC-13 was 52.5%. Diphosphatidylglycerol
(DPG), phosphatidylglycerol (PG), phosphatidylinositol
(PI), phosphatidylcholine, and phosphatidyl inositol
mannosides (PIM) were the major polar lipids, with
C18:1ω9c, C16:0, and C18:0 as the major fatty acids, and MK-8
(H4), MK-8(H2), and MK-9(H2) as the predominant respiratory
quinones. The major whole cell sugar was arabinose,
and the cell wall included mycolic acids. The cell wall peptidoglycan
contained meso-diaminopimelic acid (meso-DAP).
The polyphasic taxonomic data shows that these two strains
represent a novel species of the genus Corynebacterium, for
which the name Corynebacterium poyangense sp. nov. is
proposed. The type strain of Corynebacterium poyangense
is 4H37-19T (=GDMCC 1.1738T = KACC 21671T).
- The periplasmic chaperone protein Psg_2795 contributes to the virulence of Pseudomonas savastanoi pv. glycinea: the causal agent of bacterial blight of soybean
-
Xiuhua Wang , Xiaoyan Zhang , Bao-Hui Lu , Jie Gao
-
J. Microbiol. 2022;60(5):478-487. Published online March 4, 2022
-
DOI: https://doi.org/10.1007/s12275-022-1469-5
-
-
20
View
-
0
Download
-
3
Citations
-
Abstract
- Pseudomonas savastanoi pv. glycinea (Psg, also named P.
syringae pv. glycinea and P. amygdali pv. glycinea) is the
causative agent of bacterial blight in soybean. The identification
of virulence factors is essential for understanding
the pathogenesis of Psg. In this study, a mini-Tn5 transposon
mutant library of Psg strain PsgNC12 was screened on soybean,
and one low-virulent mini-Tn5 mutant, designated as
4573, was identified. Sequence analysis of the 4573-mutant
revealed that the mini-Tn5 transposon was inserted in the
Psg_2795 gene. Psg_2795 encodes a FimC-domain protein
that is highly conserved in Pseudomonas. Further analysis
revealed that the mutation and knockout of Psg_2795 results
in a reduced virulence phenotype on soybean, decreased motility,
weakened bacterial attachment to a glass surface and
delayed the population growth within soybean leaves. The
phenotype of the 4573-mutant could be complemented nearly
to wild-type levels using an intact Psg_2795 gene. Collectively,
our results demonstrate that Psg_2795 plays an important
role in the virulence, motility, attachment and the population
growth of PsgNC12 in soybean. This finding provides a new
insight into the function of periplasmic chaperone proteins
in a type I pilus and provides reference information for identifying
Psg_2795 homologues in P. savastanoi and other
bacteria.
- Constantimarinum furrinae gen. nov., sp. nov., a marine bacterium isolated from saline volcanic rock aquifer (lava seawater) at Jeju Island, Republic of Korea
-
Sung-Hyun Yang , Hyun-Myung Oh , Mi-Jeong Park , Dongil Jang , Kae Kyoung Kwon
-
J. Microbiol. 2022;60(1):11-17. Published online December 29, 2021
-
DOI: https://doi.org/10.1007/s12275-022-1468-6
-
-
Abstract
- A Gram-stain-negative, aerobic, rod-shaped (0.3–0.5 × 1.0–
1.9 μm), non-motile marine bacterium designated as ALE3EIT
was isolated from a saline volcanic rock aquifer (lava seawater)
on Jeju Island, Republic of Korea. The 16S rRNA gene
sequence analysis revealed that strain ALE3EIT showed high
similarity to ‘Altibacter lentus’ JLT2010T (97.2%), followed by
Marixanthomonas ophiurae KMM 3046T (94.5%). Growth
was observed at 10–41°C (optimum, 30°C), at pH 6.0–8.5
(optimum, pH 7.5) and at 0.5–8% (optimum, 4.0%) NaCl.
The predominant cellular fatty acids were iso-C15:0 (23.5%),
iso-C16:0 (10.2%), iso-C16:0 3OH (10.5%), and iso-C17:0 3OH
(16.8%). The DNA G + C contents was 40.4 mol%. The major
respiratory quinone was MK-6. The major polar lipids were
determined to be phosphatidylethanolamine, two unidentified
glycolipids, and two unidentified aminolipids. Several phenotypic
characteristics such as production of acetoin, activities
of arginine dihydrolase and acid phosphatase, and utilization
pattern of carbon sources differentiate strain ALE3EIT
from ‘A. lentus’ JLT2010T. Activities of the lipase, trypsin, α-
chymotrypsin and gelatinase and utilization pattern of carbon
sources differentiate strain ALE3EIT from M. ophiurae
KMM 3046T. The genome of strain ALE3EIT is 3.0 Mbp long
and its ANI and AAI values against ‘A. lentus’ JLT2010T were
76.58 and 72.76, respectively, however, AAI values against
members in other genera were lower than 72%. The phylogenomic
tree inferred by PhyloPhlAn clearly differentiated
the strain ALE3EIT together with strain JLT2010T from other
genera in the Falvobacteriaceae. This polyphasic taxonomic
data indicates that strain ALE3EIT should be identified as a
novel species in the genus ‘Altibacter’, however, the name
has not been validated. Therefore, the strain is classified as a
novel genus and is proposed as Constantimarinum furrinae
gen. nov., sp. nov. The type strain is ALE3EIT (= KCCM
43303T = JCM 33022T).
Retraction of Publication
- Retraction Note to: Cryptic prophages in a blaNDM‑1‑bearing plasmid increase bacterial survival against high NaCl concentration, high and low temperatures, and oxidative and immunological stressors
-
So Yeon Kim , Kwan Soo Ko
-
J. Microbiol. 2023;61(4):481-481.
-
DOI: https://doi.org/10.1007/s12275-023-00049-1
-
-
Abstract
- Retraction Note to:
Journal of Microbiology (2020) Vol. 58, No. 6, pp.
483–488
https://doi.org/10.1007/s12275-020-9605-6
The Editor-in-Chief has retracted this article at the request
of the authors. After publication concerns were raised that
prophage sequences do not exist in the genome of the plasmid
pNDM-A1 used in this study. The authors have not been
able to confirm the existence of prophage sequences in the
plasmid. As a result, the Editor-in-Chief no longer has confidence
in the results and conclusions presented in this article.
Kwan Soo Ko agrees with this retraction. So Yeon Kim has
not responded to correspondence from the Editor-in-Chief
about this retraction.