Journal Articles
- Growth and differentiation properties of pikromycin-producing Streptomyces venezuelae ATCC15439
-
Ji-Eun Kim , Joon-Sun Choi , Jung-Hye Roe
-
J. Microbiol. 2019;57(5):388-395. Published online February 5, 2019
-
DOI: https://doi.org/10.1007/s12275-019-8539-3
-
-
43
View
-
0
Download
-
5
Web of Science
-
6
Crossref
-
Abstract
-
Streptomycetes naturally produce a variety of secondary
metabolites, in the process of physiological differentiation.
Streptomyces venezuelae differentiates into spores in liquid
media, serving as a good model system for differentiation and
a host for exogenous gene expression. Here, we report the
growth and differentiation properties of S. venezuelae ATCC-
15439 in liquid medium, which produces pikromycin, along
with genome-wide gene expression profile. Comparison of
growth properties on two media (SPA, MYM) revealed that
the stationary phase cell viability rapidly decreased in SPA.
Submerged spores showed partial resistance to lysozyme and
heat, similar to what has been observed for better-characterized
S. venezuelae ATCC10712, a chloramphenicol producer.
TEM revealed that the differentiated cells in the submerged
culture showed larger cell size, thinner cell wall than
the aerial spores. We analyzed transcriptome profiles of cells
grown in liquid MYM at various growth phases. During
transition and/or stationary phases, many differentiationrelated
genes were well expressed as judged by RNA level,
except some genes forming hydrophobic coats in aerial mycelium.
Since submerged spores showed thin cell wall and
partial resistance to stresses, we examined cellular expression
of MreB protein, an actin-like protein known to be required
for spore wall synthesis in Streptomycetes. In contrast to
aerial spores where MreB was localized in septa and spore
cell wall, submerged spores showed no detectable signal.
Therefore, even though the mreB transcripts are abundant in
liquid medium, its protein level and/or its interaction with
spore wall synthetic complex appear impaired, causing thinner-
walled and less sturdy spores in liquid culture.
-
Citations
Citations to this article as recorded by

- Biosynthesis of Arcyriaflavin F from Streptomyces venezuelae ATCC 10712
Hung‐En Lai, Agata Kennedy, Lewis Tanner, Emma A. Bartram, Soo Mei Chee, Paul S. Freemont, Simon J. Moore
ChemBioChem.2024;[Epub] CrossRef - Functional analysis of the whole CYPome and Fdxome of Streptomyces venezuelae ATCC 15439
Shuai Li, Zhong Li, Guoqiang Zhang, Vlada B. Urlacher, Li Ma, Shengying Li
Engineering Microbiology.2024; 4(4): 100166. CrossRef - Glucose-1-phosphate thymidylyltransferase promotes the production of 3-O-α-mycarosylerythronolide B in Streptomyces coelicolor
Hong Gao, Swen Langer, Tony Larson, Matthew A Gregory, Margaret C M Smith
Journal of Applied Microbiology.2024;[Epub] CrossRef - Comparative Metagenomics Reveals Microbial Signatures of Sugarcane Phyllosphere in Organic Management
Ahmad Nuruddin Khoiri, Supapon Cheevadhanarak, Jiraporn Jirakkakul, Sudarat Dulsawat, Peerada Prommeenate, Anuwat Tachaleat, Kanthida Kusonmano, Songsak Wattanachaisaereekul, Sawannee Sutheeworapong
Frontiers in Microbiology.2021;[Epub] CrossRef - Lysine acetylation of the housekeeping sigma factor enhances the activity of the RNA polymerase holoenzyme
Ji-Eun Kim, Joon-Sun Choi, Jong-Seo Kim, You-Hee Cho, Jung-Hye Roe
Nucleic Acids Research.2020; 48(5): 2401. CrossRef - Characterization of Actinomycetes Strains Isolated from the Intestinal Tract and Feces of the Larvae of the Longhorn Beetle Cerambyx welensii
Ramón I. Santamaría, Ana Martínez-Carrasco, Ricardo Sánchez de la Nieta, Luis M. Torres-Vila, Raúl Bonal, Jesús Martín, Rubén Tormo, Fernando Reyes, Olga Genilloud, Margarita Díaz
Microorganisms.2020; 8(12): 2013. CrossRef
- Disruption of SCO5461 Gene Coding for a Mono-ADP-Ribosyltransferase Enzyme Produces a Conditional Pleiotropic Phenotype Affecting Morphological Differentiation and Antibiotic Production in Streptomyces coelicolor
-
Krisztina Szirák , Judit Keser , Sándor Biró , Iván Schmelczer , György Barabás , András Penyige
-
J. Microbiol. 2012;50(3):409-418. Published online June 30, 2012
-
DOI: https://doi.org/10.1007/s12275-012-1440-y
-
-
33
View
-
0
Download
-
9
Scopus
-
Abstract
-
The SCO5461 gene of Streptomyces coelicolor A3(2) codes for an ADP-ribosyltransferase enzyme that is predicted to be a transmembrane protein with an extracellular catalytic domain. PCR-targeted disruption of the gene resulted in a mutant that differentiated normally on complex SFM medium; however, morphological differentiation in minimal medium was significantly delayed and this phenotype was even more pronounced on osmotically enhanced minimal medium. The mutant did not sporulate when it was grown on R5 medium, however the normal morphological differentiation was restored when the strain was cultivated beside the wild-type S. coelicolor M145 strain. Comparison of the pattern of ADP-ribosylated proteins showed a difference between the mutant and the wild type, fewer modified proteins were present in the cellular crude extract of the mutant strain. These results support our previous suggestions that protein ADP-ribosylation is involved in the regulation of differentiation and antibiotic production and secretion in Streptomyces.
- Porphyromonas gingivalis-Derived Lipopolysaccharide-Mediated Activation of MAPK Signaling Regulates Inflammatory Response and Differentiation in Human Periodontal Ligament Fibroblasts
-
Taegun Seo , Seho Cha , Tae-Il Kim , Hee-Jung Park , Jeong-Soon Lee , Kyung Mi Woo
-
J. Microbiol. 2012;50(2):311-319. Published online April 27, 2012
-
DOI: https://doi.org/10.1007/s12275-012-2146-x
-
-
27
View
-
0
Download
-
28
Crossref
-
Abstract
-
Porphyromonas gingivalis (P.g.), which is a potential pathogen
for periodontal diseases, contains lipopolysaccharide
(LPS), and this endotoxin stimulates a variety of cellular
responses. At present, P.g.-derived LPS-induced cellular responses
in human periodontal ligament fibroblasts (PDLFs)
are not well characterized. Here, we demonstrate that P.gderived
LPS regulates inflammatory responses, apoptosis
and differentiation in PDLFs. Interleukin-6 (IL-6) and -8
(IL-8) were effectively upregulated by treatment of P.g.-derived
LPS, and we confirmed apoptosis markers including
elevated cytochrome c levels, active caspase-3 and morphological
change in the presence of P.g.-derived LPS. Moreover,
when PDLFs were cultured with differentiation media, P.g.-
derived LPS reduced the expression of differentiation marker
genes, as well as reducing alkaline phosphatase (ALP) activity
and mineralization. P.g.-derived LPS-mediated these
cellular responses were effectively abolished by treatment
of mitogen-activated protein kinase (MAPK) inhibitors.
Taken together, our results suggest that P.g.-derived LPS
regulates several cellular responses via activation of MAPK
signaling pathways in PDLFs.
-
Citations
Citations to this article as recorded by

- Evaluation of the role of mitofusin‐1 and mitofusin‐2 in periodontal disease
Ömer Alperen Kırmızıgül, Arife Sabanci, Faruk Dişli, Sedat Yıldız, Michael R. Milward, Kübra Aral
Journal of Periodontology.2024; 95(1): 64. CrossRef - Programmed cell death of periodontal ligament cells
Wei He, Yu Fu, Song Yao, Lan Huang
Journal of Cellular Physiology.2023; 238(8): 1768. CrossRef - Porphyromonas gingivalis lipopolysaccharide promotes T-hel per17 cell differentiation by upregulating Delta-like ligand 4 expression on CD14+ monocytes
Chi Zhang, Chenrong Xu, Li Gao, Xiting Li, Chuanjiang Zhao
PeerJ.2021; 9: e11094. CrossRef - Gene expression profiles of mitochondria-endoplasmic reticulum tethering in human gingival fibroblasts in response to periodontal pathogens
Kübra Aral, Michael R. Milward, Paul R. Cooper
Archives of Oral Biology.2021; 128: 105173. CrossRef - Ginsenoside Rb3 Inhibits Pro-Inflammatory Cytokines via MAPK/AKT/NF-κB Pathways and Attenuates Rat Alveolar Bone Resorption in Response to Porphyromonas gingivalis LPS
Minmin Sun, Yaoting Ji, Zhen Li, Rourong Chen, Shuhui Zhou, Chang Liu, Minquan Du
Molecules.2020; 25(20): 4815. CrossRef - Low-intensity pulsed ultrasound upregulates osteogenesis under inflammatory conditions in periodontal ligament stem cells through unfolded protein response
Han Li, Yuejia Deng, Minmin Tan, Ge Feng, Yunchun Kuang, Jie Li, Jinlin Song
Stem Cell Research & Therapy.2020;[Epub] CrossRef - Effect of ScLL and 15d-PGJ2 on viability and cytokine release in LPS-stimulated fibroblasts: an in vitro study
Manuella Verdinelli de Paula REIS, Gabriela Leite de SOUZA, Priscilla Barbosa Ferreira SOARES, Maria Aparecida de SOUZA, Carlos José SOARES, Camilla Christian Gomes MOURA
Brazilian Oral Research.2020;[Epub] CrossRef - TLR activation inhibits the osteogenic potential of human periodontal ligament stem cells through Akt signaling in a Myd88‐ or TRIF‐dependent manner
Yunyan Zhu, Qian Li, Yanheng Zhou, Weiran Li
Journal of Periodontology.2019; 90(4): 400. CrossRef - Low‐intensity pulsed ultrasound promotes bone morphogenic protein 9‐induced osteogenesis and suppresses inhibitory effects of inflammatory cytokines on cellular responses via Rho‐associated kinase 1 in human periodontal ligament fibroblasts
Joji Kusuyama, Toshiaki Nakamura, Tomokazu Ohnishi, Brent G. Albertson, Yukari Ebe, Nahoko Eiraku, Kazuyuki Noguchi, Tetsuya Matsuguchi
Journal of Cellular Biochemistry.2019; 120(9): 14657. CrossRef - Periodontal bacterial supernatants modify differentiation, migration and inflammatory cytokine expression in human periodontal ligament stem cells
Liza L. Ramenzoni, Giancarlo Russo, Maria D. Moccia, Thomas Attin, Patrick R. Schmidlin, Alain Haziot
PLOS ONE.2019; 14(7): e0219181. CrossRef - Necrostatin-1 promotes ectopic periodontal tissue like structure regeneration in LPS-treated PDLSCs
Bingbing Yan, Hongmei Zhang, Taiqiang Dai, Yongchun Gu, Xinyu Qiu, Cheng Hu, Yan Liu, Kewen Wei, Dehua Li, Motohiro Komaki
PLOS ONE.2018; 13(11): e0207760. CrossRef - TGF-β2 downregulates osteogenesis under inflammatory conditions in dental follicle stem cells
Soyoun Um, Joo-Hee Lee, Byoung-Moo Seo
International Journal of Oral Science.2018;[Epub] CrossRef - Periostin promotes migration and osteogenic differentiation of human periodontal ligament mesenchymal stem cells via the Jun amino‐terminal kinases (JNK) pathway under inflammatory conditions
Yi Tang, Lin Liu, Pei Wang, Donglei Chen, Ziqiang Wu, Chunbo Tang
Cell Proliferation.2017;[Epub] CrossRef - Osteogenic potential of periodontal ligament stem cells are unaffected after exposure to lipopolysaccharides
Mayra Laino ALBIERO, Bruna Rabelo AMORIM, Márcio Zaffalon CASATI, Enilson Antonio SALLUM, Francisco Humberto NOCITI JUNIOR, Karina Gonzales SILVÉRIO
Brazilian Oral Research.2017;[Epub] CrossRef - Periodontal-Derived Mesenchymal Cell Sheets Promote Periodontal Regeneration in Inflammatory Microenvironment
Shujuan Guo, Jian Kang, Baohui Ji, Weihua Guo, Yi Ding, Yafei Wu, Weidong Tian
Tissue Engineering Part A.2017; 23(13-14): 585. CrossRef - Hypoxia enhances the effect of lipopolysaccharide-stimulated IL-1β expression in human periodontal ligament cells
Jittima Pumklin, Kanokporn Bhalang, Prasit Pavasant
Odontology.2016; 104(3): 338. CrossRef - Effect of lectin (ScLL) on fibroblasts stimulated with LPS - an in vitro study
Manuella Verdinelli de Paula REIS, Camilla Christian Gomes MOURA, Marcus Vinicius da SILVA, Maria Aparecida de SOUZA, Priscilla Barbosa Ferreira SOARES, Carlos José SOARES
Brazilian Oral Research.2016;[Epub] CrossRef - Leukocyte Inclusion within a Platelet Rich Plasma-Derived Fibrin Scaffold Stimulates a More Pro-Inflammatory Environment and Alters Fibrin Properties
Eduardo Anitua, Mar Zalduendo, María Troya, Sabino Padilla, Gorka Orive, Paula A. da Costa Martins
PLOS ONE.2015; 10(3): e0121713. CrossRef - The negative feedback regulation of microRNA-146a in human periodontal ligament cells after Porphyromonas gingivalis lipopolysaccharide stimulation
Shao-Yun Jiang, Dong Xue, Yu-Feng Xie, Dong-Wang Zhu, Yun-Yun Dong, Cong-Cong Wei, Jia-Yin Deng
Inflammation Research.2015; 64(6): 441. CrossRef - IL-1R/TLR2 through MyD88 Divergently Modulates Osteoclastogenesis through Regulation of Nuclear Factor of Activated T Cells c1 (NFATc1) and B Lymphocyte-induced Maturation Protein-1 (Blimp1)
Zhihong Chen, Lingkai Su, Qingan Xu, Jenny Katz, Suzanne M. Michalek, Mingwen Fan, Xu Feng, Ping Zhang
Journal of Biological Chemistry.2015; 290(50): 30163. CrossRef - Effects of Streptococcus thermophilus on volatile sulfur compounds produced by Porphyromonas gingivalis
Sung-Hoon Lee, Dong-Heon Baek
Archives of Oral Biology.2014; 59(11): 1205. CrossRef - Porphyromonas gingivalis LPS inhibits osteoblastic differentiation and promotes pro-inflammatory cytokine production in human periodontal ligament stem cells
Hirohito Kato, Yoichiro Taguchi, Kazuya Tominaga, Makoto Umeda, Akio Tanaka
Archives of Oral Biology.2014; 59(2): 167. CrossRef - Effect of epithelial rests of Malassez’ cells on RANKL mRNA expression and ALP activity by periodontal ligament fibroblasts stimulated with sonicated Porphyromonas gingivalis in vitro
Kenichi Matsuzaka, Eitoyo Kokubu, Takashi Inoue
Journal of Oral and Maxillofacial Surgery, Medicine, and Pathology.2014; 26(4): 554. CrossRef - Effects of Enterococcus faecalis lipoteichoic acid on receptor activator of nuclear factor‐κB ligand and osteoprotegerin expression in periodontal ligament fibroblasts
L. Zhao, J. Chen, L. Cheng, X. Wang, J. Du, F. Wang, Z. Peng
International Endodontic Journal.2014; 47(2): 163. CrossRef - Apoptosis: an underlying factor for accelerated periodontal disease associated with diabetes in rats
Mustafa Tunalı, Tamer Ataoğlu, Ilhami Çelik
Clinical Oral Investigations.2014; 18(7): 1825. CrossRef - Reducing the bioactivity of Tannerella forsythia lipopolysaccharide by Porphyromonas gingivalis
Young-Jae Kim, Sung-Hoon Lee
Journal of Microbiology.2014; 52(8): 702. CrossRef - Bambusae Caulis in Taeniam modulates neuroprotective and anti-neuroinflammatory effects in hippocampal and microglial cells via HO-1- and Nrf-2-mediated pathways
HYE WON EOM, SUN YOUNG PARK, YOUNG HUN KIM, SU JIN SEONG, MEI LING JIN, EUN YEON RYU, MIN JU KIM, SANG JOON LEE
International Journal of Molecular Medicine.2012; 30(6): 1512. CrossRef - Baicalin Downregulates Porphyromonas gingivalis Lipopolysaccharide-Upregulated IL-6 and IL-8 Expression in Human Oral Keratinocytes by Negative Regulation of TLR Signaling
Wei Luo, Cun-Yu Wang, Lijian Jin, Anne Wertheimer
PLoS ONE.2012; 7(12): e51008. CrossRef
Research Support, Non-U.S. Gov't
- Identification of [sigma]^B-Dependent Promoters Using Consensus-Directed Search of Streptomyces coelicolor Genome
-
Eun-Jin Lee , You-Hee Cho , Hyo-Sub Kim , Jung-Hye Roe
-
J. Microbiol. 2004;42(2):147-151.
-
DOI: https://doi.org/2030 [pii]
-
-
Abstract
-
[sigma]^B plays an important role in both osmoprotection and proper differentiation in Streptomyces coelicolor A3(2). We searched for candidate members of the [sigma]^B regulon from the genome database, using the consensus promoter sequence (GNNTN_14-16GGGTAC/T). The list consists of 115 genes, and includes all the known [sigma]^B target genes and many other genes whose functions are related to stress protection and differentiation.
- Isolation and Genetic Mapping of Paraquat-Resistant Sporulating Mutants of Streptomyces Coelicolor
-
Chung, Hye Jung , Kim, Eun Ja , Park, Uhn Mee , Roe, Jung Hye
-
J. Microbiol. 1995;33(3):215-221.
-
-
-
Abstract
-
S. coelicolor A3(2) cells were treated with various redox-cycling agents on nutrient agar plates and examined for their effect on the growth and differentiation. When treated with plumbagin, severe effect on cell viability was observed at concentrations above 250 uM. However, the surviving colonies differentiated normally. When treated with 100 uM paraquat, growth rate was decreased and morphological differentiation was inhibited, while the survival rate was maintained at about 100% even at 5 mM paraquat. Menadione or lawsone did not cause any visible changes at concentrations up to 1 mM. The effect of paraquat was also observed when it was added to nutrient agar plate before spore inoculation. Paraquat had also observed when it was added to nutrient agar plate before spore inoculation. Paraquat had no effect on colonies growing on R2YE agar plates. Among the components of R2YE medium selectively added to nutrient agar medium, CaCl₂was found to have some protective function from the inhibitory effect of paraquat. As a first step to study the mechanism of the inhibitory effect of paraquat on differentiation, resistant mutants which sporulate well in the presence of paraquat were screened following UV mutagenesis. Three paraquat-resistant mutants were isolated with a frequency of 3 × 10^-5. Their mutation sites were determined by genetic crossings. All three mutations were mapped to a single locus near argA at about 1 o'clock on the genetic map of S. coelicolor A3(2).
- Characteristics of trypsin-like protease and metalloprotease associated with mycelium differentiation of streptomyces albidoflavus SMF301
-
Kang, Sung Gyun , Kim, In Seop , Jeong, Byung Cheol , Ryu, Jae Gon , Rho, Yong Taik , Lee, Kye Joon
-
J. Microbiol. 1995;33(4):307-314.
-
-
-
Abstract
-
Trypsin like protease (TLP) and metalloprotease (MTP) were induced in associated with the mycelium differentiation in Streptomyces albidoflavus SMF301. TLP and MTP were purified and characterized from the culture. The molecular mass of TLP and MTP were estimated to be 32 kDa and 18 kDa, respectively. The molecular mass of TLP and MTP were estimated to be 32 kDa and 18 kDa, respectively. The optimum pH and temperature of TLP were 10 and 40℃. Those of MTP were 8 and 55 ℃. TLP was stable at alkaline pH (6-9) and unstable above 45℃ and MTP was stable at alkaline pH and unstable above 80℃. Km and Vmax values with benzoyl-arginyl p-nitroanilide of TLP were 139 uM, and 10 nmole of nitroanilide released per min per ㎍ protein, respectively. Km, and Vmax values with a synthetic substrate, leucine p-nitroanilide, or MTP were 58.9 uM, 3.47 nmol of nitroanilide released per min per/㎍ protein, respectively. TLP was inhibited competitively by leupeptin; the inhibition constant was 0.0031 uM. MTP was inhibited by EDTA, phenonthroline and bestatin.
- Physiological importance of trypsin-like protease during morphological differentiation of streptomycetes
-
Kim, In Seop , Kang, Sung Gyun , Lee, Kye Joon
-
J. Microbiol. 1995;33(4):315-321.
-
-
-
Abstract
-
The relationship between morphological differentiation and production of trypsin-like protease (TLP_ in streptomycetes was studied. All the Streptomyces spp. In this study produced TLP just before the onset of aerial mycelium formation. Addition of TLP inhibitor, TLCK, to the top surface of colonies inhibited aerial mycelium formation as well as TLP inhibitor, TLCK, to the top surface of colonies inhibited aerial mycelium formation as well as TLP activity. Addition of 2% glucose to the Bennett agar medium repressed both the aerial mycelium formation and TLP production in S. abuvaviensis, S. coelicolor A3(2), S exfoliatus, S. microflavus, S. roseus, s. lavendulae, and S. rochei. However the addition of glucose did not affect S. limosus, S. felleus, S. griseus, S. phaechromogenes, and S. rimosus. The glucose repression on aerial mycelium formation and production of TLP was relieved by the addition of glucose anti-metabolite (methyl α-glucopyranoside). Therefore, it was concluded that TLP production is coordinately regulated with morphological differentiation and TLP activity is essential for morphological differentiation in streptomycetes. The proposed role of TLP is that TLP participates in the degradation of substrate mycelium protein for providing nutrient for aerial mycelial growth.
- Stage-specific change and regulation of endogenous protein phosphorylation in allomyces macrogynus
-
Park, Young Shik , Oh, Keun Hee , Lee, Soo Woong , Seong, Chang Soo , Park, I Ha , Yim, Jeong Bin
-
J. Microbiol. 1996;34(4):374-378.
-
-
-
Abstract
-
In the aquatic fungus Allomyces macrogynus the effects of Ca^2+ and cAMP on the intracellular signal transduction of zeoospore germination were studied using in vitro protein phosphorylation assay system. An endogenuously phosphorylated protein (p50) having molecular weight of 50 kDa on SDS-PAGE was found in soluble fractions of both zeoospore and mycelium. In zoospore extract, the endogenous phophorylation of p50 was weak without any effectors, but was enhanced by Ca^2+ and even more by cAMP. Phosphorylation of the same protein in mycelial extract was high only in the absence of cAMP. Irrespective of the presence of Ca^2+ and cAMP, its phosphorylation was antagonistically suppressed in assay of combined zoospore and mycelial extracts. These results suggest that p50 is interconvertible in phosphorylation/dephosphorylation as a novel protein involved in germination of A. macrogynus. The antagonistic effect of cAMP to the phosphorylation of p50s from different developmental stages may be important in the regulation of cellular differentiation.
- Effect of Polyamines on Cellular Differintiation of N. gruberi: Inhibition of Translation of Tubulin mRNA
-
Yoo, Jin Uk , Kwon, Kyung Soon , Cho, Hyun Il , Kim, Dae Myung , Chung, In Kwon , Kim, Young Min , Lee, Tae HO , Lee, Joo Hun
-
J. Microbiol. 1997;35(4):315-322.
-
-
-
Abstract
-
The effects of a polyamine, spermine, on the differentiation of Naegleria gruberi amebas into flagellates were tested. Addition of spermine at early stages of differentiation (until 40 min after the initiation of differentiation) completely inhibited the differentiation. To understand the inhibition mechanism, we examined the effect of spermine treatment on the transcription and translation of differentiation-specific genes during differentiation. Addition of spermine at early stages did not inhibit the accumulation of two differentiation-specific mRNAs, α-tubulin and Class I mRNA, significantly, but rather prevented the rapid degradation of the mRNAs in later overall protein synthesis partially and gradually. However, translation of the α-tubulin mRNA was completely inhibited. These data suggest that the inhibition of differentiation of N. gruberi by spermine treatment did not result from the inhibition of transcription of differentiation-specific genes but from the specific inhibition of translation of the mRNAs during the differentiation.