Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
14 "diversity"
Filter
Filter
Article category
Keywords
Publication year
Authors
Journal Articles
Quorum Quenching Potential of Reyranella sp. Isolated from Riverside Soil and Description of Reyranella humidisoli sp. nov.
Dong Hyeon Lee, Seung Bum Kim
J. Microbiol. 2024;62(6):449-461.   Published online May 30, 2024
DOI: https://doi.org/10.1007/s12275-024-00131-2
  • 21 View
  • 0 Download
AbstractAbstract
Quorum quenching refers to any mechanism that inhibits quorum sensing processes. In this study, quorum quenching activity among bacteria inhabiting riverside soil was screened, and a novel Gram-stain-negative, rod shaped bacterial strain designated MMS21-HV4-11(T), which showed the highest level of quorum quenching activity, was isolated and subjected to further analysis. Strain MMS21-HV4-11(T) could be assigned to the genus Reyranella of Alphaproteobacteria based on the 16S rRNA gene sequence, as the strain shared 98.74% sequence similarity with Reyranella aquatilis seoho-37(T), and then 97.87% and 97.80% sequence similarity with Reyranella soli KIS14-15(T) and Reyranella massiliensis 521(T), respectively. The decomposed N-acyl homoserine lactone was restored at high concentrations under acidic conditions, implying that lactonase and other enzyme(s) are responsible for quorum quenching. The genome analysis indicated that strain MMS21-HV4-11(T) had two candidate genes for lactonase and one for acylase, and expected protein structures were confirmed. In the quorum sensing inhibition assay using a plant pathogen Pectobacterium carotovorum KACC 14888, development of soft rot was significantly inhibited by strain MMS21-HV4-11(T). Besides, the swarming motility by Pseudomonas aeruginosa PA14 was significantly inhibited in the presence of strain MMS21-HV4-11(T). Since the isolate did not display direct antibacterial activity against either of these species, the inhibition was certainly due to quorum quenching activity. In an extended study with the type strains of all known species of Reyranella, all strains were capable of degrading N-acyl homoserine lactones (AHLs), thus showing quorum quenching potential at the genus level. This is the first study on the quorum quenching potential and enzymes responsible in Reyranella. In addition, MMS21-HV4-11(T) could be recognized as a new species through taxonomic characterization, for which the name Reyranella humidisoli sp. nov. is proposed (type strain = MMS21-HV4-11( T) = KCTC 82780( T) = LMG 32365(T)).
Flavivirga spongiicola sp. nov. and Flavivirga abyssicola sp. nov., Isolated from Marine Environments
Sung-Hyun Yang , Mi-Jeong Park , Hyun-Myung Oh , Yeong-Jun Park , Kae Kyoung Kwon
J. Microbiol. 2024;62(1):11-19.   Published online February 6, 2024
DOI: https://doi.org/10.1007/s12275-023-00102-z
  • 27 View
  • 0 Download
  • 1 Citations
AbstractAbstract
Two novel Gram-stain-negative, strictly-aerobic, rod-shaped (1.2 ± 3.4 μm × 0.3 ± 0.7 μm), and non-motile marine bacterial species, designated MEBiC05379T and MEBiC07777T, were isolated from a marine sponge Pseudaxinella sp. in Gangneung City and deep-sea sediments of the Ulleung basin in the East Sea of Korea, respectively. The 16S rRNA gene sequence analysis revealed high levels of similarities between these strains and members of the genus Flavivirga (97.0–98.4% sequence identities). Both novel strains revealed as mesophilic, neutrophilic in pH and slightly halophilic. Similar to those of other Flavivirga members, the primary cellular fatty acids of both strains were iso-C15:0, iso-C15:1 G, iso-C15:03-OH, and iso-C17:0 3-OH, with MEBiC05379T and MEBiC07777T containing relatively higher proportions of C12: 0 and summed feature 3 ( C16:1ω7c and/or C16: 1ω6c). In both taxa, the major isoprenoid quinone was MK-6. The DNA G + C contents of MEBiC05379T and MEBiC07777T genomes were 32.62 and 32.46 mol%, respectively. Compared to other members of Flavivirga, both strains exhibited similar DNA G + C ratio and fatty acids pattern, yet enzyme expression and carbon sources utilization pattern were different. Genomes of the genus Flavivirga showed enzyme preferences to fucoidan and sulfated galactans. Considering the monophyly rule, AAI values delineate the genus Flavivirga from adjacent genera calculated to be 76.0–78.7%. Based on the phenotypic, genomic and biochemical data, strains for MEBiC05379T and MEBiC07777T thus represent two novel species in the genus Flavivirga, for which the names Flavivirga spongiicola sp. nov. ( MEBiC05379T [= KCTC 92527 T = JCM 16662 T]), and Flavivirga abyssicola sp. nov. ( MEBiC07777T [= KCTC 92563 T = JCM 36477 T]) are proposed.
Review
Manganese Transporter Proteins in Salmonella enterica serovar Typhimurium
Nakyeong Ha , Eun-Jin Lee
J. Microbiol. 2023;61(3):289-296.   Published online March 2, 2023
DOI: https://doi.org/10.1007/s12275-023-00027-7
  • 21 View
  • 0 Download
  • 6 Citations
AbstractAbstract
The metal cofactors are essential for the function of many enzymes. The host restricts the metal acquisition of pathogens for their immunity and the pathogens have evolved many ways to obtain metal ions for their survival and growth. Salmonella enterica serovar Typhimurium also needs several metal cofactors for its survival, and manganese has been found to contribute to Salmonella pathogenesis. Manganese helps Salmonella withstand oxidative and nitrosative stresses. In addition, manganese affects glycolysis and the reductive TCA, which leads to the inhibition of energetic and biosynthetic metabolism. Therefore, manganese homeostasis is crucial for full virulence of Salmonella. Here, we summarize the current information about three importers and two exporters of manganese that have been identified in Salmonella. MntH, SitABCD, and ZupT have been shown to participate in manganese uptake. mntH and sitABCD are upregulated by low manganese concentration, oxidative stress, and host NRAMP1 level. mntH also contains a Mn2+- dependent riboswitch in its 5′ UTR. Regulation of zupT expression requires further investigation. MntP and YiiP have been identified as manganese efflux proteins. mntP is transcr!ptionally activated by MntR at high manganese levels and repressed its activity by MntS at low manganese levels. Regulation of yiiP requires further analysis, but it has been shown that yiiP expression is not dependent on MntS. Besides these five transporters, there might be additional transporters that need to be identified.
Journal Article
Chryseobacterium paludis sp. nov. and Chryseobacterium foetidum sp. nov. Isolated from the Aquatic Environment, South Korea
Miryung Kim , Yong&# , Chang&#
J. Microbiol. 2023;61(1):37-47.   Published online February 1, 2023
DOI: https://doi.org/10.1007/s12275-022-00008-2
  • 21 View
  • 0 Download
AbstractAbstract
Two novel bacterial species CJ51T and CJ63T belonging to the genus Chryseobacterium were isolated from the Upo wetland and the Han River, South Korea, respectively. Cells of these strains were Gram-stain-negative, aerobic, non-motile, rodshaped, and catalase- and oxidase-positive. Both strains were shown to grow optimally at 30 °C and pH 7 in the absence of NaCl on tryptic soy agar. Phylogenetic analysis based on 16S rRNA gene sequences showed that strains CJ51T and CJ63T belonged to the genus Chryseobacterium and were most closely related to Chryseobacterium piperi CTMT and Chryseobacterium piscicola VQ-6316sT with 98.47% and 98.46% 16S rRNA sequence similarities, respectively. The average nucleotide identity values of strains CJ51T and CJ63T with its closely related type strains Chryseobacterium piperi CTMT and Chryseobacterium piscicola VQ-6316sT were 81.9% and 82.1%, respectively. The major fatty acids of strains CJ51T and CJ63T were iso-C15:0, iso-C17:0 3-OH and summed feature 9 ( C16:0 10-methyl and/or iso-C17:1ω9c). Menaquinone 6 (MK-6) was identified as the primary respiratory quinone in both strains. The major polar lipids of strains CJ51T and CJ63T were phosphatidylethanolamine and several unidentified amino lipids and lipids. Based on polyphasic taxonomy data, strains CJ51T and CJ63T represent novel species of the genus Chryseobacterium, for which names Chryseobacterium paludis sp. nov. and Chryseobacterium foetidum sp. nov. are proposed respectively. The type strains are CJ51T (= KACC 22749T = JCM 35632T) and CJ63T (= KACC 22750T = JCM 35633T).
Observational Study
Early gut microbiota in very low and extremely low birth weight preterm infants with feeding intolerance: a prospective case-control study
Ling Liu , Dang Ao , Xiangsheng Cai , Peiyi Huang , Nali Cai , Shaozhu Lin , Benqing Wu
J. Microbiol. 2022;60(10):1021-1031.   Published online August 19, 2022
DOI: https://doi.org/10.1007/s12275-022-2180-2
  • 16 View
  • 0 Download
  • 8 Citations
AbstractAbstract
The potential role of the gut microbiota in the pathogenesis of feeding intolerance (FI) remains unclear. Understanding the role of the gut microbiota could provide a new avenue for microbiota-targeted therapeutics. This study aimed to explore the associations between aberrant gut microbiota and FI in very low or extremely low birth weight (VLBW/ELBW) preterm infants. In this observational case-control study, VLBW/ ELBW infants were divided into two groups: FI group and feeding tolerance (FT) group. 16S rRNA gene sequencing was performed to analyze the gut microbial diversity and composition of the infants. The differences in the gut microbiota of the two groups were compared. In total, 165 stool samples were obtained from 44 infants, among which, 31 developed FI and 13 served as controls. Alpha diversity was the highest in the meconium samples of the two groups. LEfSe analysis revealed that the abundances of Peptostreptococcaceae, Clostridiales and Clostridia in the FT group were significantly higher than in the FI group. At the phylum level, the FI group was dominated by Proteobacteria, and the FT group was dominated by Firmicutes. The meconium samples of the FI group had higher proportions of γ-proteobacteria and Escherichia-Shigella and a lower proportion of Bacteroides compared with the FT group. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis demonstrated that aberrant gut bacteria in the FI group were strongly associated with dysregulation of C5-Brancheddibasic- acid-metabolism, protein kinases, and sporulation. These findings reveal candidate microbial markers to prevent FI. Increased relative abundances of γ-proteobacteria and Escherichia-Shigella and decreased abundance of Bacteroides in meconium were associated with an increased risk of FI, while Peptostreptococcaceae, Clostridiales and Clostridia reduced the risk of FI in VLBW/ELBW infants.
Journal Articles
Deletion of lacD gene affected stress tolerance and virulence of Streptococcus suis serotype 2
Xiaowu Jiang , Lexin Zhu , Dongbo Zhan
J. Microbiol. 2022;60(9):948-959.   Published online August 19, 2022
DOI: https://doi.org/10.1007/s12275-022-2146-4
  • 17 View
  • 0 Download
AbstractAbstract
Streptococcus suis type 2 (S. suis type 2, SS2), an infectious pathogen which is zoonotic and can induce severely public health concern. Our previous research identified a newly differential secreted effector of tagatose-bisphosphate aldolase (LacD) mediated by VirD4 factor within the putative type IV secretion system of SS2, whereas the functional basis and roles in virulence of LacD remain elusive. Here in this study, the LacD was found enzymatic and can be activated to express under oxidative stress. Gene mutant and its complemental strain (ΔlacD and cΔlacD) were constructed to analyze the phenotypes, virulence and transcriptomic profiles as compared with the parental strain. The lacD gene deletion showed no effect on growth capability and cells morphology of SS2. However, reduced tolerance to oxidative and heat stress conditions, increased antimicrobial susceptibility to ciprofloxacin and kanamycin were found in ΔlacD strain. Further, the LacD deficiency led to weakened invasion and attenuated virulence since an easier phagocytosed and more prone to be cleared of SS2 in macrophages were shown in ΔlacD mutant. Distinctive transcriptional profiling in ΔlacD strain and typical downregulated genes with significant mRNA changes including alcohol dehydrogenase, GTPase, integrative and conjugative elements, and iron ABC transporters which were mainly involved in cell division, stress response, antimicrobial susceptibility and virulence regulation, were examined and confirmed by RNA sequencing and real time qPCR. In summary, the
results
demonstrated for the first time that LacD was a pluripotent protein mediated the metabolic, stress and virulent effect of SS2.
Helicobacter pylori-mediated gastric pathogenesis is attenuated by treatment of 2-deoxyglucose and metformin
Hanfu Su , Eun-Jung Bak , Aeryun Kim , Kavinda Tissera , Jeong-Heon Cha , Sungil Jang
J. Microbiol. 2022;60(8):849-858.   Published online June 22, 2022
DOI: https://doi.org/10.1007/s12275-022-2130-z
  • 17 View
  • 0 Download
  • 3 Citations
AbstractAbstract
Helicobacter pylori infection causes chronic inflammation in the stomach, which is linked to the development of gastric cancer. The anti-inflammatory and anticancer effects of a glycolysis inhibitor 2-deoxyglucose (2DG) and an antidiabetic medication metformin (Met) have gotten attention. Using a Mongolian gerbil animal model, we investigated H. pylorimediated gastric pathogenesis and how this pathogenesis is influenced by 2DG and Met. Five-week-old male gerbils were infected with H. pylori strain 7.13. After 2 weeks of infection, gerbils were fed 2DG-containing food (0.03% w/w), Met-containing water (0.5% w/v), or both (Combi) for 2 (short-term) or 10 weeks (long-term). Gastric pathogenesis and host response to H. pylori infection were examined by macroscopic and histopathologic analysis of gerbils’ stomach. As a result, indicators of gastric pathogenesis by H. pylori infection including infiltration of polymorphonuclear neutrophils and lymphocytes, intestinal metaplasia, atrophy, and proliferation of gastric epithelial cells were attenuated by short-term administration of 2DG, Met, or Combi. When the infection was sustained for long-term, gastric pathogenesis in drug-treated gerbils was equivalent to that in untreated gerbils, with the exception that the infiltration of neutrophil was reduced by 2DG. Colonization of H. pylori in stomach was unaffected by both short- and long-term treatments. Our findings demonstrate that the progression of gastric pathogenesis induced by H. pylori infection can be attenuated by the shortterm individual or combinational treatment of 2DG and Met, implying that 2DG or Met could be considered as a treatment option for gastric diseases in the early stages of infection.
Prevalence and characteristics of the mcr-1 gene in retail meat samples in Zhejiang Province, China
Biao Tang , Jiang Chang , Yi Luo , Han Jiang , Canying Liu , Xingning Xiao , Xiaofeng Ji , Hua Yang
J. Microbiol. 2022;60(6):610-619.   Published online March 31, 2022
DOI: https://doi.org/10.1007/s12275-022-1597-y
  • 16 View
  • 0 Download
  • 10 Citations
AbstractAbstract
Considering the serious threat to food safety and public health posed by pathogens with colistin resistance, colistin was banned as a growth promoter in 2017 in China. In recent years, the resistance rate of Escherichia coli isolated from animal intestines or feces to colistin has decreased. However, the prevalence and characteristics of the mcr-1 gene in retail meat have not been well explored. Herein, 106 mcr-1-negative and 16 mcr- 1-positive E. coli isolates were randomly recovered from 120 retail meat samples and screened using colistin. The 106 E. coli isolates showed maximum resistance to sulfafurazole (73.58%) and tetracycline (62.26%) but susceptibility to colistin (0.00%). All 16 mcr-1-positive E. coli isolates showed resistance to colistin, were extended spectrum beta-lactamase (ESBL)-positive and exhibited complex multidrug resistance (MDR). For these 16 isolates, 17 plasmid replicons and 42 antibiotic resistance genes were identified, and at least 7 antibiotic resistance genes were found in each isolate. Acquired disinfectant resistance genes were identified in 75.00% (12/16) of the isolates. Furthermore, comparative genomic and phylogenetic analysis
results
indicated that these 16 mcr-1-positive E. coli isolates and the most prevalent mcr-1-harboring IncI2 plasmid in this study were closely related to other previously reported mcr-1-positive E. coli isolates and the IncI2 plasmid, respectively, showing their wide distribution. Taken together, our findings showed that retail meat products were a crucial reservoir of mcr-1 during the colistin ban period and should be continuously monitored.
Function of Rhs proteins in porcine extraintestinal pathogenic Escherichia coli PCN033
Wenjia Lu , Jia Tan , Hao Lu , Gaoyan Wang , Wenqi Dong , Chenchen Wang , Xiaodan Li , Chen Tan
J. Microbiol. 2021;59(9):854-860.   Published online August 12, 2021
DOI: https://doi.org/10.1007/s12275-021-1189-2
  • 17 View
  • 0 Download
  • 4 Citations
AbstractAbstract
Extraintestinal pathogenic Escherichia coli (ExPEC) is an important zoonotic pathogen that places severe burdens on public health and animal husbandry. There are many pathogenic factors in E. coli. The type VI secretion system (T6SS) is a nano-microbial weapon that can assemble quickly and inject toxic effectors into recipient cells when danger is encountered. T6SSs are encoded in the genomes of approximately 25% of sequenced Gram-negative bacteria. When these bacteria come into contact with eukaryotic cells or prokaryotic microbes, the T6SS assembles and secretes associated effectors. In the porcine ExPEC strain PCN033, we identified four classic rearrangement hotspot (Rhs) genes. We determined the functions of the four Rhs proteins through mutant construction and protein expression. Animal infection experiments showed that the Δrhs-1CT, Δrhs-2CT, Δrhs-3CT, and Δrhs-4CT caused a significant decrease in the multiplication ability of PCN033 in vivo. Cell infection experiments showed that the Rhs protein is involved in anti-phagocytosis activities and bacterial adhesion and invasion abilities. The results of this study demonstrated that rhs1, rhs3, and rh4 plays an important role in the interaction between PCN033 and host cell. Rhs2 has contribution to cell and mice infection. This study helps to elucidate the pathogenic mechanism governing PCN033 and may help to establish a foundation for further research seeking to identify potential T6SS effectors.
The quorum sensing regulator OpaR is a repressor of polar flagellum genes in Vibrio parahaemolyticus
Renfei Lu , Junfang Sun , Yue Qiu , Miaomiao Zhang , Xingfan Xue , Xue Li , Wenhui Yang , Dongsheng Zhou , Lingfei Hu , Yiquan Zhang
J. Microbiol. 2021;59(7):651-657.   Published online June 1, 2021
DOI: https://doi.org/10.1007/s12275-021-0629-3
  • 11 View
  • 0 Download
  • 21 Citations
AbstractAbstract
Vibrio parahaemolyticus possesses two types of flagella: a single polar flagellum (Pof) for swimming and the peritrichous lateral flagella (Laf) for swarming. Expression of Laf genes has previously been reported to be regulated by the quorum sensing (QS) regulators AphA and OpaR. In the present study, we showed that OpaR, the QS regulator at high cell density (HCD), acted as a negative regulator of swimming motility and the transcription of Pof genes in V. parahaemolyticus. OpaR bound to the promoter-proximal DNA regions of flgAMN, flgMN, and flgBCDEFGHIJ within the Pof gene loci to repress their transcription, whereas it negatively regulates the transcription of flgKL-flaC in an indirect manner. Thus, this work investigated how QS regulated the swimming motility via direct action of its master regulator OpaR on the transcription of Pof genes in V. parahaemolyticus.
Review
A comprehensive review of SARS-CoV-2 genetic mutations and lessons from animal coronavirus recombination in one health perspective
Woonsung Na , Hyoungjoon Moon , Daesub Song
J. Microbiol. 2021;59(3):332-340.   Published online February 23, 2021
DOI: https://doi.org/10.1007/s12275-021-0660-4
  • 15 View
  • 0 Download
  • 15 Citations
AbstractAbstract
SARS-CoV-2 was originated from zoonotic coronaviruses and confirmed as a novel beta-coronavirus, which causes serious respiratory illness such as pneumonia and lung failure, COVID-19. In this review, we describe the genetic characteristics of SARS-CoV-2, including types of mutation, and molecular epidemiology, highlighting its key difference from animal coronaviruses. We further summarized the current knowledge on clinical, genetic, and pathological features of several animal coronaviruses and compared them with SARSCoV- 2, as well as recent evidences of interspecies transmission and recombination of animal coronaviruses to provide a better understanding of SARS-CoV-2 infection in One Health perspectives. We also discuss the potential wildlife hosts and zoonotic origin of this emerging virus in detail, that may help mitigate the spread and damages caused by the disease.
Journal Articles
Monthly distribution of ammonia-oxidizing microbes in a tropical bay
Tie-Qiang Mao , Yan-Qun Li , Hong-Po Dong , Wen-Na Yang , Li-Jun Hou
J. Microbiol. 2021;59(1):10-19.   Published online November 17, 2020
DOI: https://doi.org/10.1007/s12275-021-0287-5
  • 13 View
  • 0 Download
AbstractAbstract
Ammonia oxidation, performed by ammonia-oxidizing archaea (AOA) and bacteria (AOB), plays a critical role in the cycle of nitrogen in the ocean. For now, environmental variables controlling distribution of ammonia-oxidizing microbes are still largely unknown in oceanic environments. In this study, we used real-time quantitative PCR and high-throughput sequencing
methods
to investigate the abundance and diversity of AOA and AOB from sediment and water in Zhanjiang Bay. Phylogenic analysis revealed that the majority of AOA amoA sequences in water and sediment were affiliated with the genus Nitrosopumilus, whereas the Nitrosotalea cluster was only detected with low abundance in water. Nitrosomonas and Nitrosospira dominated AOB amoA sequences in water and sediment, respectively. The amoA copy numbers of both AOA and AOB varied significantly with month for both sediment and water. When water and sediment temperature dropped to 17– 20°C in December and February, respectively, the copy number of AOB amoA genes increased markedly and was much higher than for AOA amoA genes. Also, AOA abundance in water peaked in December when water temperature was lowest (17–20°C). Stepwise multiple regression analyses revealed that temperature was the most key factor driving monthly changes of AOA or AOB abundance. It is inferred that low water temperature may inhibit growth of phytoplankton and other microbes and so reduce competition for a common substrate, ammonium.
Phosphorylation of tegument protein pp28 contributes to trafficking to the assembly compartment in human cytomegalovirus infection
Jun-Young Seo , Jin Ah Heo , William J. Britt
J. Microbiol. 2020;58(7):624-631.   Published online June 27, 2020
DOI: https://doi.org/10.1007/s12275-020-0263-5
  • 14 View
  • 0 Download
  • 4 Citations
AbstractAbstract
Human cytomegalovirus (HCMV) UL99 encodes a late tegument protein pp28 that is essential for envelopment and production of infectious virus. This protein is localized to the endoplasmic reticulum-Golgi intermediate compartment (ERGIC) in transfected cells but it localizes to the cytoplasmic assembly compartment (AC) in HCMV-infected cells. Trafficking of pp28 to the AC is required for the assembly of infectious virus. The N-terminal domain (aa 1-61) of pp28 is sufficient for trafficking and function of the wild type protein during viral infection. However, residues required for authentic pp28 trafficking with the exception of the acidic cluster in the N-terminal domain of pp28 remain undefined. Monitoring protein migration on SDS-PAGE, we found that pp28 is phosphorylated in the virus-infected cells and dephosphorylated in the viral particles. By generating substitution mutants of pp28, we showed that three serine residues (aa 41–43) and a tyrosine residue (aa 34) account for its phosphorylation. The mutant forms of pp28 were localized to the plasma membrane as well as the ERGIC in transfected cells. Likewise, these mutant proteins were localized to the plasma membrane as well as the AC in virus-infected cells. These results suggested that phosphorylation of pp28 contributes to its intracellular trafficking and efficient viral assembly and incorporation.
Reversible function of RapA with the C-terminus of RapC in Dictyostelium
Dongju Kim , Wonbum Kim , Taeck Joong Jeon
J. Microbiol. 2021;59(9):853-848.
DOI: https://doi.org/10.1007/s12275-021-1400-5
  • 19 View
  • 0 Download
  • 2 Citations
AbstractAbstract
Rap small GTPases are involved in diverse signaling pathways associated with cell growth, proliferation, and cell migration. There are three Rap proteins in Dictyostelium, RapA, RapB, and RapC. RapA is a key regulator in the control of cell adhesion and migration. Recently RapA and RapC have been reported to have opposite functions in the regulation of cellular processes. In this study, we demonstrate that the C-terminus of RapC, which is not found in RapA, is essential for the opposite functions of RapC and is able to reverse the functions of RapA when fused to the tail of RapA. Cells lacking RapC displayed several defective phenotypes, including spread morphology, strong adhesion, and decreased cell migration compared to wild-type cells. These phenotypes were rescued by full-length RapC, but not by RapC missing the C-terminus. Furthermore, recombinant RapA fused with the C-terminus of RapC completely recovered the phenotypes of rapC null cells, indicating that the functions of RapA were modified to become similar to those of RapC by the C-terminus of RapC with respect to cell morphology, cell adhesion and migration, cytokinesis, and development. These results suggest that the C-terminal residues of RapC are able to suppress and change the functions of other Ras proteins in Ras oncogenic signaling pathways.

Journal of Microbiology : Journal of Microbiology
TOP