Search
- Page Path
-
HOME
> Search
Journal Articles
- Functional analysis of ascP in Aeromonas veronii TH0426 reveals a key role in the regulation of virulence
-
Yongchao Guan , Meng Zhang , Yingda Wang , Zhongzhuo Liu , Zelin Zhao , Hong Wang , Dingjie An , Aidong Qian , Yuanhuan Kang , Wuwen Sun , Xiaofeng Shan
-
J. Microbiol. 2022;60(12):1153-1161. Published online November 10, 2022
-
DOI: https://doi.org/10.1007/s12275-022-2373-8
-
-
12
View
-
0
Download
-
3
Citations
-
Abstract
- Aeromonas veronii is a pathogen which can induce diseases in
humans, animals and aquatic organisms, but its pathogenic
mechanism and virulence factors are still elusive. In this study,
we successfully constructed a mutant strain (ΔascP) by homologous
recombination. The results showed that the deletion
of the ascP gene significantly down-regulated the expression
of associated effector proteins in A. veronii compared
to its wild type. The adhesive and invasive abilities of ΔascP to
EPC cells were 0.82-fold lower in contrast to the wild strain.
The toxicity of ΔascP to cells was decreased by about 2.91-fold
(1 h) and 1.74-fold (2 h). Furthermore, the LD50 of the mutant
strain of crucian carp was reduced by 19.94-fold, and
the virulence was considerably attenuated. In contrast to the
wild strain, the ΔascP content in the liver and spleen was considerably
lower. The titers of serum cytokines (IL-8, TNF-α,
and IL-1β) in crucian carp after the infection of the ΔascP strain
were considerably lower in contrast to the wild strain. Hence,
the ascP gene is essential for the etiopathogenesis of A. veronii
TH0426.
- The synergy effect of arbuscular mycorrhizal fungi symbiosis and exogenous calcium on bacterial community composition and growth performance of peanut (Arachis hypogaea L.) in saline alkali soil
-
Dunwei Ci , Zhaohui Tang , Hong Ding , Li Cui , Guanchu Zhang , Shangxia Li , Liangxiang Dai , Feifei Qin , Zhimeng Zhang , Jishun Yang , Yang Xu
-
J. Microbiol. 2021;59(1):51-63. Published online November 17, 2020
-
DOI: https://doi.org/10.1007/s12275-021-0317-3
-
-
15
View
-
0
Download
-
18
Citations
-
Abstract
- Peanut (Arachis hypogaea. L) is an important oil seed crop.
Both arbuscular mycorrhizal fungi (AMF) symbiosis and calcium
(Ca2+) application can ameliorate the impact of saline
soil on peanut production, and the rhizosphere bacterial communities
are also closely correlated with peanut salt tolerance;
however, whether AMF and Ca2+ can withstand high-salinity
through or partially through modulating rhizosphere bacterial
communities is unclear. Here, we used the rhizosphere
bacterial DNA from saline alkali soil treated with AMF and
Ca2+ alone or together to perform high-throughput sequencing
of 16S rRNA genes. Taxonomic analysis revealed that
AMF and Ca2+ treatment increased the abundance of Proteobacteria
and Firmicutes at the phylum level. The nitrogenfixing
bacterium Sphingomonas was the dominant genus in
these soils at the genus level, and the soil invertase and urease
activities were also increased after AMF and Ca2+ treatment,
implying that AMF and Ca2+ effectively improved the living
environment of plants under salt stress. Moreover, AMF combined
with Ca2+ was better than AMF or Ca2+ alone at altering
the bacterial structure and improving peanut growth in saline
alkali soil. Together, AMF and Ca2+ applications are conducive
to peanut salt adaption by regulating the bacterial community
in saline alkali soil.
TOP