Molecular analysis based on large-scale sequencing of the
plant microbiota has revealed complex relationships between
plants and microbial communities, and environmental factors
such as soil type can influence these relationships. However,
most studies on root-associated microbial communities
have focused on model plants such as Arabidopsis, rice or
crops. Herein, we examined the microbiota of rhizocompartments
of two native plants, Sedum takesimense Nakai and
Campanula takesimana Nakai, using archaeal and bacterial
16S rRNA gene amplicon profiling, and assessed relationships
between environmental factors and microbial community
composition. We identified 390 bacterial genera, including
known plant-associated genera such as Pseudomonas,
Flavobacterium, Bradyrhizobium and Rhizobium, and uncharacterized
clades such as DA101 that might be important
in root-associated microbial communities in bulk soil. Unexpectedly,
Nitrososphaera clade members were abundant,
indicating functional association with roots. Soil texture/type
has a greater impact on microbial community composition
in rhizocompartments than chemical factors. Our results provide
fundamental knowledge on microbial diversity, community
and correlations with environmental factors, and expand
our understanding of the microbiota in rhizocompartments
of native plants.