Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
3 "fatty acid composition"
Filter
Filter
Article category
Keywords
Publication year
Research Support, Non-U.S. Gov'ts
Bacillus daqingensis sp. nov., a Halophilic, Alkaliphilic Bacterium Isolated from Saline-Sodic Soil in Daqing, China
Shuang Wang , Lei Sun , Dan Wei , Baoku Zhou , Junzheng Zhang , Xuejia Gu , Lei Zhang , Ying Liu , Yidan Li , Wei Guo , Shuang Jiang , Yaqing Pan , Yufeng Wang
J. Microbiol. 2014;52(7):548-553.   Published online May 30, 2014
DOI: https://doi.org/10.1007/s12275-014-3376-x
  • 50 View
  • 0 Download
  • 7 Crossref
AbstractAbstract
An alkaliphilic, moderately halophilic, bacterium, designated strain X10-1T, was isolated from saline-alkaline soil in Daqing, Heilongjiang Province, China. Strain X10-1T was determined to be a Gram-positive aerobe with rod-shaped cells. The isolate was catalase-positive, oxidase-negative, non-motile, and capable of growth at salinities of 0–16% (w/v) NaCl (optimum, 3%). The pH range for growth was 7.5–11.0 (optimum, pH 10.0). The genomic DNA G+C content was 47.7 mol%. Its major isoprenoid quinone was MK-7 and its cellular fatty acid profile mainly consisted of anteiso-C15:0, anteiso-C17:0, iso-C15:0, C16:0, and iso-C16:0. The peptidoglycan contained meso-diaminopimelic acid as the diagnostic diamino acid. The predominant polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, and phosphatidylglycerol. Phylogenetic analysis based on 16S rRNA gene sequences showed that X10-1T is a member of the genus Bacillus, being most closely related to B. saliphilus DSM15402T (97.8% similarity) and B. agaradhaerens DSM 8721T (96.2%). DNA-DNA relatedness to the type strains of these species was less than 40%. On the basis of the phylogenetic, physiological, and biochemical data, strain X10-1T represents a novel species of the genus Bacillus, for which the name Bacillus daqingensis sp. nov. is proposed. The type strain is X10-1T (=NBRC 109404T =CGMCC 1.12295T).

Citations

Citations to this article as recorded by  
  • Validation List no. 213. Valid publication of new names and new combinations effectively published outside the IJSEM
    Aharon Oren, Markus Göker
    International Journal of Systematic and Evolutionary Microbiology .2023;[Epub]     CrossRef
  • Alteribacter salitolerans sp. nov., isolated from a saline-alkaline soil
    Shuang Wang, Lei Sun, Manik Prabhu Narsing Rao, Guo-Hong Liu, Pin-Jiao Jin, Zhou-Yan Dong, Zheng-Han Lian, Xiao-Yu Hao, Ming-Yi Zhang, Wen-Jun Li
    Archives of Microbiology.2022;[Epub]     CrossRef
  • Microbial Diversity and Adaptation under Salt-Affected Soils: A Review
    Chiranjeev Kumawat, Ajay Kumar, Jagdish Parshad, Shyam Sunder Sharma, Abhik Patra, Prerna Dogra, Govind Kumar Yadav, Sunil Kumar Dadhich, Rajhans Verma, Girdhari Lal Kumawat
    Sustainability.2022; 14(15): 9280.     CrossRef
  • Exploring Soil Factors Determining Composition and Structure of the Bacterial Communities in Saline-Alkali Soils of Songnen Plain
    Shuang Wang, Lei Sun, Ning Ling, Chen Zhu, Fengqin Chi, Weiqun Li, Xiaoyu Hao, Wu Zhang, Jingyang Bian, Lei Chen, Dan Wei
    Frontiers in Microbiology.2020;[Epub]     CrossRef
  • Reclassification of Bacillus saliphilus as Alkalicoccus saliphilus gen. nov., comb. nov., and description of Alkalicoccus halolimnae sp. nov., a moderately halophilic bacterium isolated from a salt lake
    Baisuo Zhao, Weidong Lu, Shanshan Zhang, Kang Liu, Yanchun Yan, Jun Li
    International Journal of Systematic and Evolutionary Microbiology.2017; 67(5): 1557.     CrossRef
  • Bacillus urumqiensis sp. nov., a moderately haloalkaliphilic bacterium isolated from a salt lake
    Shanshan Zhang, Zhaojun Li, Yanchun Yan, Chuanlun Zhang, Jun Li, Baisuo Zhao
    International Journal of Systematic and Evolutionary Microbiology.2016; 66(6): 2305.     CrossRef
  • Microbially-driven strategies for bioremediation of bauxite residue
    Talitha C. Santini, Janice L. Kerr, Lesley A. Warren
    Journal of Hazardous Materials.2015; 293: 131.     CrossRef
Halomonas alkalitolerans sp. nov., a Novel Moderately Halophilic Bacterium Isolated from Soda Meadow Saline Soil in Daqing, China
Shuang Wang , Qian Yang , Zhi-Hua Liu , Lei Sun , Dan Wei , Jun-Zheng Zhang , Jin-Zhu Song , Yun Wang , Jia Song , Jin-Xia Fan , Xian-Xin Meng , Wei Zhang
J. Microbiol. 2011;49(1):24-28.   Published online March 3, 2011
DOI: https://doi.org/10.1007/s12275-011-0197-z
  • 40 View
  • 0 Download
  • 9 Scopus
AbstractAbstract
A moderately halophilic bacterial strain 15-13T, which was isolated from soda meadow saline soil in Daqing City, Heilongjiang Province, China, was subjected to a polyphasic taxonomic study. The cells of strain 15-13T were found to be Gram-negative, rod-shaped, and motile. The required growth conditions for strain 15-13T were: 1-23% NaCl (optimum, 7%), 10-50°C (optimum, 35°C), and pH 7.0-11.0 (optimum, pH 9.5). The predominant cellular fatty acids were C18:1 ω7c (60.48%) and C16:0 (13.96%). The DNA G+C content was 67.6 mol%. Phylogenetic analysis based on 16S rRNA gene sequence comparisons indicated that strain 15-13T clustered within a branch comprising species of the genus Halomonas. The closest phylogenetic neighbor of strain 15-13T was Halomonas pantelleriensis DSM 9661T (98.9% 16S rRNA gene sequence similarity). The level of DNA-DNA relatedness between the novel isolated strain and H. pantelleriensis DSM 9661T was 33.8%. On the basis of the phenotypic and phylogenetic data, strain 15-13T represents a novel species of the genus Halomonas, for which the name Halomonas alkalitolerans sp. nov. is proposed. The type strain for this novel species is 15-13T (=CGMCC 1.9129T =NBRC 106539T).
Heat Shock Causes Oxidative Stress and Induces a Variety of Cell Rescue Proteins in Saccharomyces cerevisiae KNU5377
Il-Sup Kim , Hye-Youn Moon , Hae-Sun Yun , Ingnyol Jin
J. Microbiol. 2006;44(5):492-501.
DOI: https://doi.org/2449 [pii]
  • 36 View
  • 0 Download
AbstractAbstract
In this study, we attempted to characterize the physiological response to oxidative stress by heat shock in Saccharomyces cerevisiae KNU5377 (KNU5377) that ferments at a temperature of 40°C. The KNU5377 strain evidenced a very similar growth rate at 40°C as was recorded under normal conditions. Unlike the laboratory strains of S. cerevisiae, the cell viability of KNU5377 was affected slightly under 2 hours of heat stress conditions at 43°C. KNU5377 evidenced a time-dependent increase in hydroperoxide levels, carbonyl contents, and malondialdehyde (MDA), which increased in the expression of a variety of cell rescue proteins containing Hsp104p, Ssap, Hsp30p, Sod1p, catalase, glutathione reductase, G6PDH, thioredoxin, thioredoxin peroxidase (Tsa1p), Adhp, Aldp, trehalose and glycogen at high temperature. Pma1/2p, Hsp90p and H+-ATPase expression levels were reduced as the result of exposure to heat shock. With regard to cellular fatty acid composition, levels of unsaturated fatty acids (USFAs) were increased significantly at high temperatures (43°C), and this was particularly true of oleic acid (C18:1). The results of this study indicated that oxidative stress as the result of heat shock may induce a more profound stimulation of trehalose, antioxidant enzymes, and heat shock proteins, as well as an increase in the USFAs ratios. This might contribute to cellular protective functions for the maintenance of cellular homeostasis, and may also contribute to membrane fluidity.

Journal of Microbiology : Journal of Microbiology
TOP