Search
- Page Path
-
HOME
> Search
Journal Articles
- Enhanced Poly-γ-Glutamic Acid Production by a Newly Isolated Bacillus halotolerans F29.
-
Xiaorong Sun, Yaoyu Cai, Dexin Wang
-
J. Microbiol. 2024;62(8):695-707. Published online August 20, 2024
-
DOI: https://doi.org/10.1007/s12275-024-00153-w
-
-
Abstract
- Poly-γ-glutamic acid (γ-PGA) is a promising biopolymer for various applications.
In this study, we isolated a novel γ-PGA-producing strain, Bacillus halotolerans F29. The one-factor-at-a-time method was used to investigate the influence of carbon sources, nitrogen sources, and culture parameters on γ-PGA production. The optimal carbon and nitrogen sources were sucrose and (NH4)2SO4, respectively. The optimal culture conditions for γ-PGA production were determined to be 37 °C and a pH of 5.5. Response surface methodology was used to determine the optimum medium components: 77.6 g/L sucrose, 43.0 g/L monosodium glutamate, and 2.2 g/L K2HPO4. The γ-PGA titer increased significantly from 8.5 ± 0.3 g/L to 20.7 ± 0.7 g/L when strain F29 was cultivated in the optimized medium. Furthermore, the γ-PGA titer reached 50.9 ± 1.5 g/L with a productivity of 1.33 g/L/h and a yield of 2.23 g of γ-PGA/g of L-glutamic acid with the optimized medium in fed-batch fermentation. The maximum γ-PGA titer reached 45.3 ± 1.1 g/L, with a productivity of 1.06 g/L/h when molasses was used as a carbon source. It should be noted that the γ-PGA yield in this study was the highest of all reported studies, indicating great potential for the industrial production of γ-PGA.
- Delineating the Acquired Genetic Diversity and Multidrug Resistance in Alcaligenes from Poultry Farms and Nearby Soil.
-
Abhilash Bhattacharjee, Anil Kumar Singh
-
J. Microbiol. 2024;62(7):511-523. Published online June 21, 2024
-
DOI: https://doi.org/10.1007/s12275-024-00129-w
-
-
Abstract
- Alcaligenes faecalis is one of the most important and clinically significant environmental pathogens, increasing in importance due to its isolation from soil and nosocomial environments. The Gram-negative soil bacterium is associated with skin endocarditis, bacteremia, dysentery, meningitis, endophthalmitis, urinary tract infections, and pneumonia in patients. With emerging antibiotic resistance in A. faecalis, it has become crucial to understand the origin of such resistance genes within this clinically significant environmental and gut bacterium. In this research, we studied the impact of antibiotic overuse in poultry and its effect on developing resistance in A. faecalis. We sampled soil and faecal materials from five poultry farms, performed whole genome sequencing & analysis and identified four strains of A. faecalis. Furthermore, we characterized the genes in the genomic islands of A. faecalis isolates. We found four multidrug-resistant A. faecalis strains that showed resistance against vancomycin (MIC >1000 μg/ml), ceftazidime (50 μg/ml), colistin (50 μg/ml) and ciprofloxacin (50 μg/ml). From whole genome comparative analysis, we found more than 180 resistance genes compared to the reference sequence. Parts of our assembled contigs were found to be similar to different bacteria which included pbp1A and pbp2 imparting resistance to amoxicillin originally a part of Helicobacter and Bordetella pertussis. We also found the Mycobacterial insertion element IS6110 in the genomic islands of all four genomes. This prominent insertion element can be transferred and induce resistance to other bacterial genomes. The results thus are crucial in understanding the transfer of resistance genes in the environment and can help in developing regimes for antibiotic use in the food and poultry industry.
Review
- Protective and pathogenic role of humoral responses in COVID-19
-
Uni Park , Nam-Hyuk Cho
-
J. Microbiol. 2022;60(3):268-275. Published online March 2, 2022
-
DOI: https://doi.org/10.1007/s12275-022-2037-8
-
-
22
View
-
0
Download
-
4
Citations
-
Abstract
- Since the advent of SARS-CoV-2 in Dec. 2019, the global endeavor
to identify the pathogenic mechanism of COVID-19
has been ongoing. Although humoral immunity including
neutralizing activity play an important role in protection from
the viral pathogen, dysregulated antibody responses may be
associated with the pathogenic progression of COVID-19,
especially in high-risk individuals. In addition, SARS-CoV-2
spike-specific antibodies acquired by prior infection or vaccination
act as immune pressure, driving continuous population
turnover by selecting for antibody-escaping mutations.
Here, we review accumulating knowledge on the potential
role of humoral immune responses in COVID-19, primarily
focusing on their beneficial and pathogenic properties. Understanding
the multifaceted regulatory mechanisms of humoral
responses during SARS-CoV-2 infection can help us to develop
more effective therapeutics, as well as protective measures
against the ongoing pandemic.
Journal Article
- Mst1/2-ALK promotes NLRP3 inflammasome activation and cell apoptosis during Listeria monocytogenes infection
-
Aijiao Gao , Huixin Tang , Qian Zhang , Ruiqing Liu , Lin Wang , Yashan Liu , Zhi Qi , Yanna Shen
-
J. Microbiol. 2021;59(7):681-692. Published online April 20, 2021
-
DOI: https://doi.org/10.1007/s12275-021-0638-2
-
-
17
View
-
0
Download
-
8
Citations
-
Abstract
- Listeria monocytogenes (L. monocytogenes) is a Gram-positive
intracellular foodborne pathogen that causes severe diseases,
such as meningitis and sepsis. The NLR family pyrin
domain-containing 3 (NLRP3) inflammasome has been reported
to participate in host defense against pathogen infection.
However, the exact molecular mechanisms underlying
NLRP3 inflammasome activation remain to be fully elucidated.
In the present study, the roles of mammalian Ste20-
like kinases 1/2 (Mst1/2) and Anaplastic Lymphoma Kinase
(ALK) in the activation of the NLRP3 inflammasome induced
by L. monocytogenes infection were investigated. The
expression levels of Mst1/2, phospho (p)-ALK, p-JNK, Nek7,
and NLRP3 downstream molecules including activated caspase-
1 (p20) and mature interleukin (IL)-1β (p17), were upregulated
in L. monocytogenes-infected macrophages. The
ALK inhibitor significantly decreased the expression of p-JNK,
Nek7, and NLRP3 downstream molecules in macrophages infected
with L. monocytogenes. Furthermore, the Mst1/2 inhibitor
markedly inhibited the L. monocytogenes-induced activation
of ALK, subsequently downregulating the expression
of p-JNK, Nek7, and NLRP3 downstream molecules. Therefore,
our study demonstrated that Mst1/2-ALK mediated
the activation of the NLRP3 inflammasome by promoting
the interaction between Nek7 and NLRP3 via JNK during
L. monocytogenes infection, which subsequently increased the
maturation and release of proinflammatory cytokine to resist
pathogen infection. Moreover, Listeriolysin O played a
key role in the process. In addition, we also found that the L.
monocytogenes-induced apoptosis of J774A.1 cells was reduced
by the Mst1/2 or ALK inhibitor. The present study reported,
for the first time, that the Mst1/2-ALK-JNK-NLRP3 signaling
pathway plays a vital proinflammatory role during L. monocytogenes
infection.
TOP