Journal Article
- The Regulation of Phosphorus Release by Penicillium chrysogenum in Different Phosphate via the TCA Cycle and Mycelial Morphology
-
Liyan Wang , Da Tian , Xiaoru Zhang , Mingxue Han , Xiaohui Cheng , Xinxin Ye , Chaochun Zhang , Hongjian Gao , Zhen Li
-
J. Microbiol. 2023;61(8):765-775. Published online September 4, 2023
-
DOI: https://doi.org/10.1007/s12275-023-00072-2
-
-
45
View
-
0
Download
-
2
Web of Science
-
Abstract
-
Phosphate-solubilizing fungi (PSF) efficiently dissolve insoluble phosphates through the production of organic acids. This
study investigates the mechanisms of organic acid secretion by PSF, specifically Penicillium chrysogenum, under tricalcium
phosphate (
Ca3(PO4)2, Ca–P) and ferric phosphate (
FePO4, Fe–P) conditions. Penicillium chrysogenum exhibited higher
phosphorus (P) release efficiency from Ca-P (693.6 mg/L) than from Fe–P (162.6 mg/L). However, Fe–P significantly
enhanced oxalic acid (1193.7 mg/L) and citric acid (227.7 mg/L) production by Penicillium chrysogenum compared with
Ca–P (905.7 and 3.5 mg/L, respectively). The presence of Fe–P upregulated the expression of genes and activity of enzymes
related to the tricarboxylic acid cycle, including pyruvate dehydrogenase and citrate synthase. Additionally, Fe–P upregulated
the expression of chitinase and endoglucanase genes, inducing a transformation of Penicillium chrysogenum mycelial
morphology from pellet to filamentous. The filamentous morphology exhibited higher efficiency in oxalic acid secretion
and P release from Fe–P and Ca–P. Compared with pellet morphology, filamentous morphology enhanced P release capacity
by > 40% and > 18% in Ca–P and Fe–P, respectively. This study explored the strategies employed by PSF to improve the
dissolution of different insoluble phosphates.
Research Support, Non-U.S. Gov't
- Replication and Pathogenesis of the Pandemic (H1N1) 2009 Influenza Virus in Mammalian Models
-
Donghyok Kwon , Kyeongcheol Shin , Seungtae Kim , Yooncheol Ha , Jang-Hoon Choi , Jeong Seon Yang , Joo-Yeon Lee , Chanhee Chae , Hee-Bok Oh , Chun Kang
-
J. Microbiol. 2010;48(5):657-662. Published online November 3, 2010
-
DOI: https://doi.org/10.1007/s12275-010-0120-z
-
-
33
View
-
0
Download
-
19
Scopus
-
Abstract
-
This study aimed to characterize the replication and pathogenic properties of a Korean pandemic (H1N1) 2009 influenza virus isolate in ferrets and mice. Ferrets infected with A/Korea/01/2009 (H1N1) virus showed mild clinical signs. The virus replicated well in lungs and slightly in brains with no replication in any other organs. Severe bronchopneumonia and thickening of alveolar walls were detected in the lungs. Viral antigens were detected in the bronchiolar epithelial cells, in peribronchial glands with severe peribronchitis and in cells present in the alveoli. A/Korea/01/2009 (H1N1) virus-infected mice showed weight loss and pathological lung lesions including perivascular cuffing, interstitial pneumonia and alveolitis. The virus replicated highly in the lungs and slightly in the nasal tissues. Viral antigens were detected in bronchiolar epithelial cells, pneumocytes and interstitial macrophages. However, seasonal H1N1 influenza virus did not replicate in the lungs of ferrets, and viral antigens were not detected. Thus, this Korean pandemic (H1N1) 2009 isolate infected the lungs of ferrets and mice successfully and caused more pathological lesions than did the seasonal influenza virus.
- Evaluation of the Efficacy of a Pre-pandemic H5N1 Vaccine (MG1109) in Mouse and Ferret Models
-
Min-Suk Song , Ho-Jin Moon , Hyeok-il Kwon , Philippe Noriel Q. Pascua , Jun Han Lee , Yun Hee Baek , Kyu-Jin Woo , Juhee Choi , Sangho Lee , Hyunseung Yoo , In gyeong Oh , Yeup Yoon , Jong-Bok Rho , Moon-Hee Sung , Seung-Pyo Hong , Chul-Joong Kim , Young Ki Choi
-
J. Microbiol. 2012;50(3):487-488.
-
-
-
Abstract
-
The threat of a highly pathogenic avian influenza (HPAI) H5N1 virus causing the next pandemic remains a major concern. In this study, we evaluated the immunogenicity and efficacy of an inactivated whole-virus H5N1 pre-pandemic vaccine (MG1109) formulated by Green Cross Co., Ltd containing the hemagglutinin (HA) and neuraminidase (NA) genes of the clade 1 A/Vietnam/1194/04 virus in the backbone of A/Puerto Rico/8/34 (RgVietNam/04xPR8/34). Administration of the MG1109 vaccine (2-doses) in mice and ferrets elicited high HI and SN titers in a dose-dependent manner against the homologous (RgVietNam/04xPR8/34) and various heterologous H5N1 strains, (RgKor/W149/06xPR8/34, RgCambodia/04xPR8/34, RgGuangxi/05xPR8/34), including a heterosubtypic H5N2 (A/Aquatic bird/orea/W81/05) virus. However, efficient cross-reactivity was not observed against heterosubtypic H9N2 (A/Ck/Korea/H0802/08) and H1N1 (PR/8/34) viruses. Mice immunized with 1.9 μg HA/dose of MG1109 were completely protected from lethal challenge with heterologous wild-type HPAI H5N1 A/EM/Korea/W149/06 (clade 2.2) and mouse-adapted H5N2 viruses. Furthermore, ferrets administered at least 3.8 μg HA/dose efficiently suppressed virus growth in the upper respiratory tract and lungs. Vaccinated mice and ferrets also demonstrated attenuation of clinical disease signs and limited virus spread to other organs. Thus, this vaccine provided immunogenic responses in mouse and ferret models even against challenge with heterologous HPAI H5N1 and H5N2 viruses. Since the specific strain of HPAI H5N1 virus that would potentially cause the next outbreak is unknown, pre-pandemic vaccine preparation that could provide crossprotection against various H5 strains could be a useful approach in the selection of promising candidate vaccines in the future.