Search
- Page Path
-
HOME
> Search
Journal Article
- Potency of Phlebia species of white rot fungi for the aerobic degradation, transformation and mineralization of lindane
-
Pengfei Xiao , Ryuichiro Kondo
-
J. Microbiol. 2020;58(5):395-404. Published online March 28, 2020
-
DOI: https://doi.org/10.1007/s12275-020-9492-x
-
-
23
View
-
0
Download
-
15
Citations
-
Abstract
- The widespread use of the organochlorine insecticide lindane
in the world has caused serious environmental problems.
The main purpose of this paper is to investigate the potency
of several Phlebia species of white rot fungi to degrade, transform
and mineralize lindane, and to provide the feasibility
of using white rot fungi for bioremediation at contaminated
sites. Based on tolerance experiment results, Phlebia brevispora
and Phlebia lindtneri had the highest tolerance to lindane
and were screened by degradation tests. After 25 days of
incubation, P. brevispora and P. lindtneri degraded 87.2 and
73.3% of lindane in low nitrogen medium and 75.8 and 64.9%
of lindane in high nitrogen medium, respectively. Several unreported
hydroxylation metabolites, including monohydroxylated,
dehydroxylated, and trihydroxylated products, were detected
and identified by GC/MS as metabolites of lindane.
More than 10% of [14C] lindane was mineralized to 14CO2 by
two fungi after 60 days of incubation, and the mineralization
was slightly promoted by the addition of glucose. Additionally,
the degradation of lindane and the formation of metabolites
were efficiently inhibited by piperonyl butoxide, demonstrating
that cytochrome P450 enzymes are involved in the fungal
transformation of lindane. The present study showed that
P. brevispora and P. lindtneri were efficient degraders of lindane;
hence, they can be applied in the bioremediation process
of lindane-contaminated sites.
TOP