Search
- Page Path
-
HOME
> Search
Journal Article
- Gastrointestinal microbiota alteration induced by Mucor circinelloides in a murine model
-
Katherine D. Mueller , Hao Zhang , Christian R. Serrano , R. Blake Billmyre , Eun Young Huh , Philipp Wiemann , Nancy P. Keller , Yufeng Wang , Joseph Heitman , Soo Chan Lee
-
J. Microbiol. 2019;57(6):509-520. Published online May 27, 2019
-
DOI: https://doi.org/10.1007/s12275-019-8682-x
-
-
11
View
-
0
Download
-
18
Citations
-
Abstract
- Mucor circinelloides is a pathogenic fungus and etiologic agent
of mucormycosis. In 2013, cases of gastrointestinal illness
after yogurt consumption were reported to the US FDA, and
the producer found that its products were contaminated with
Mucor. A previous study found that the Mucor strain isolated
from an open contaminated yogurt exhibited virulence
in a murine systemic infection model and showed that this
strain is capable of surviving passage through the gastrointestinal
tract of mice. In this study, we isolated another Mucor
strain from an unopened yogurt that is closely related but
distinct from the first Mucor strain and subsequently examined
if Mucor alters the gut microbiota in a murine host
model. DNA extracted from a ten-day course of stool samples
was used to analyze the microbiota in the gastrointestinal
tracts of mice exposed via ingestion of Mucor spores. The
bacterial 16S rRNA gene and fungal ITS1 sequences obtained
were used to identify taxa of each kingdom. Linear regressions
revealed that there are changes in bacterial and fungal abundance
in the gastrointestinal tracts of mice which ingested
Mucor. Furthermore, we found an increased abundance of
the bacterial genus Bacteroides and a decreased abundance
of the bacteria Akkermansia muciniphila in the gastrointestinal
tracts of exposed mice. Measurements of abundances
show shifts in relative levels of multiple bacterial and fungal
taxa between mouse groups. These findings suggest that exposure
of the gastrointestinal tract to Mucor can alter the microbiota
and, more importantly, illustrate an interaction between
the intestinal mycobiota and bacteriota. In addition, Mucor was able to induce increased permeability in epithelial
cell monolayers in vitro, which might be indicative of unstable
intestinal barriers. Understanding how the gut microbiota is
shaped is important to understand the basis of potential methods
of treatment for gastrointestinal illness. How the gut
microbiota changes in response to exposure, even by pathogens
not considered to be causative agents of food-borne illness,
may be important to how commercial food producers
prevent and respond to contamination of products aimed at
the public. This study provides evidence that the fungal microbiota,
though understudied, may play an important role
in diseases of the human gut.
TOP