Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
12 "glucose"
Filter
Filter
Article category
Keywords
Publication year
Journal Articles
Description of Nocardioides piscis sp. nov., Sphingomonas piscis sp. nov. and Sphingomonas sinipercae sp. nov., isolated from the intestine of fish species Odontobutis interrupta (Korean spotted sleeper) and Siniperca scherzeri (leopard mandarin fish)
Dong-Wook Hyun , Yun-Seok Jeong , Jae-Yun Lee , Hojun Sung , So-Yeon Lee , Jee-Won Choi , Hyun Sik Kim , Pil Soo Kim , Jin-Woo Bae
J. Microbiol. 2021;59(6):552-562.   Published online April 20, 2021
DOI: https://doi.org/10.1007/s12275-021-1036-5
  • 46 View
  • 0 Download
  • 11 Web of Science
  • 13 Crossref
AbstractAbstract
A polyphasic taxonomic approach was used to characterize three novel bacterial strains, designated as HDW12AT, HDW- 15BT, and HDW15CT, isolated from the intestine of fish species Odontobutis interrupta or Siniperca scherzeri. All isolates were obligate aerobic, non-motile bacteria, and grew optimally at 30°C. Phylogenetic analysis based on 16S rRNA sequences revealed that strain HDW12AT was a member of the genus Nocardioides, and closely related to Nocardioides allogilvus CFH 30205T (98.9% sequence identities). Furthermore, strains HDW15BT and HDW15CT were members of the genus Sphingomonas, and closely related to Sphingomonas lutea JS5T and Sphingomonas sediminicola Dae 20T (97.1% and 97.9% sequence identities), respectively. Strain HDW12AT contained MK-8 (H4), and strains HDW15BT and HDW15CT contained Q-10 as the respiratory quinone. Major polar lipid components of strain HDW12AT were diphosphatidylglycerol, phosphatidylglycerol, and phosphatidylinositol, and those of strains HDW15BT and HDW15CT were sphingoglycolipid, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, and phosphatidylcholine. The G + C content of strains HDW12AT, HDW15BT, and HDW15CT were 69.7, 63.3, and 65.5%, respectively. The results of phylogenetic, phenotypic, chemotaxonomic, and genotypic analyses suggest that strain HDW12AT represents a novel species within the genus Nocardioides, and strains HDW15BT and HDW15CT represent two novel species within the genus Sphingomonas. We propose the names Nocardioides piscis for strain HDW12AT (= KACC 21336T = KCTC 49321T = JCM 33670T), Sphingomonas piscis for strain HDW15BT (= KACC 21341T = KCTC 72588T = JCM 33738T), and Sphingomonas sinipercae for strain HDW15CT (= KACC 21342T = KCTC 72589T = JCM 33739T).

Citations

Citations to this article as recorded by  
  • Description of Streptococcus dentalis sp. nov., Streptococcus gingivalis sp. nov., and Streptococcus lingualis sp. nov., Isolated from Human Oral Cavities
    Beom-Jin Goo, Young-Sik Choi, Do-Hun Gim, Su-Won Jeong, Jee-Won Choi, Hojun Sung, Jae-Yun Lee, Jin-Woo Bae
    Journal of Microbiology.2024; 62(11): 973.     CrossRef
  • Sphingomonas flavescens sp. nov., isolated from soil
    Hyosun Lee, Dhiraj Kumar Chaudhary, Dong-Uk Kim
    Archives of Microbiology.2024;[Epub]     CrossRef
  • Nocardioides limicola sp. nov., an alkaliphilic alkane degrading bacterium isolated from oilfield alkali-saline soil
    Lin Zhu, Biyue Yang, Wenjun Guo, Xinyu Hu, Shenkui Liu, Xiang Xiao, Wei Wei
    Antonie van Leeuwenhoek.2024;[Epub]     CrossRef
  • An update on novel taxa and revised taxonomic status of bacteria isolated from aquatic host species described in 2022–2023
    Claire R. Burbick, Sara D. Lawhon, Brittany Bukouras, Giovanna Lazzerini, Erik Munson, Romney M. Humphries
    Journal of Clinical Microbiology.2024;[Epub]     CrossRef
  • The probiotic roles of Lactiplantibacillus plantarum E2 as a dietary supplement in growth promotion and disease resistance of juvenile large yellow croaker (Larimichthys crocea)
    Ruizhe Liu, Shan Wang, Dongliang Huang, Yulu Huang, Tianliang He, Xinhua Chen
    Aquaculture.2024; 578: 740082.     CrossRef
  • Phylogeny, phenotypic characteristics and pathogenicity of Sphingomonas sp. and Erwinia persicina as bacterial causal agents of lettuce diseases in southwest of Iran
    Vahid Keshavarz-Tohid, Somayeh Ebrahimi
    Physiological and Molecular Plant Pathology.2023; 127: 102124.     CrossRef
  • Description and genomic characterization of Nocardioides bruguierae sp. nov., isolated from Bruguiera gymnorhiza
    Xiaohui Chen, Zhouqing Zheng, Feina Li, Xiao Ma, Feng Chen, Mingsheng Chen, Li Tuo
    Systematic and Applied Microbiology.2023; 46(2): 126391.     CrossRef
  • Parasphingorhabdus cellanae sp. nov., isolated from the gut of a Korean limpet, Cellana toreuma
    Ji-Ho Yoo, Jeong Eun Han, June-Young Lee, Su-Won Jeong, Yun-Seok Jeong, Jae-Yun Lee, So-Yeon Lee, Hojun Sung, Euon Jung Tak, Hyun Sik Kim, Pil Soo Kim, Jee-Won Choi, Do-Yeon Kim, In Chul Jeong, Do-Hun Gim, Seo Min Kang, Jin-Woo Bae
    International Journal of Systematic and Evolutionary Microbiology .2022;[Epub]     CrossRef
  • Nocardioides palaemonis sp. nov. and Tessaracoccus palaemonis sp. nov., isolated from the gastrointestinal tract of lake prawn
    Do-Yeon Kim, In-Chul Jeong, So-Yeon Lee, Yun-Seok Jeong, Jeong Eun Han, Euon Jung Tak, June-Young Lee, Pil Soo Kim, Dong-Wook Hyun, Jin-Woo Bae
    International Journal of Systematic and Evolutionary Microbiology .2022;[Epub]     CrossRef
  • Intergenerational Transfer of Persistent Bacterial Communities in Female Nile Tilapia
    Yousri Abdelhafiz, Jorge M. O. Fernandes, Claudio Donati, Massimo Pindo, Viswanath Kiron
    Frontiers in Microbiology.2022;[Epub]     CrossRef
  • Valid publication of new names and new combinations effectively published outside the IJSEM. Validation List no. 203
    Aharon Oren, George M. Garrity
    International Journal of Systematic and Evolutionary Microbiology .2022;[Epub]     CrossRef
  • Anaerostipes hominis sp. nov., a novel butyrate-producing bacteria isolated from faeces of a patient with Crohn's disease
    Jae-Yun Lee, Woorim Kang, Na-Ri Shin, Dong-Wook Hyun, Pil Soo Kim, Hyun Sik Kim, June-Young Lee, Euon Jung Tak, Hojun Sung, Jin-Woo Bae
    International Journal of Systematic and Evolutionary Microbiology .2021;[Epub]     CrossRef
  • Pathogenomics of Streptococcus ilei sp. nov., a newly identified pathogen ubiquitous in human microbiome
    Dong-Wook Hyun, Jae-Yun Lee, Min-Soo Kim, Na-Ri Shin, Tae Woong Whon, Kyung Hyun Kim, Pil Soo Kim, Euon Jung Tak, Mi-Ja Jung, June Young Lee, Hyun Sik Kim, Woorim Kang, Hojun Sung, Che Ok Jeon, Jin-Woo Bae
    Journal of Microbiology.2021; 59(8): 792.     CrossRef
The NADP+-dependent glutamate dehydrogenase Gdh1 is subjected to glucose starvation-induced reversible aggregation that affects stress resistance in yeast
Woo Hyun Lee , Ju Yeong Oh , Pil Jae Maeng
J. Microbiol. 2019;57(10):884-892.   Published online August 3, 2019
DOI: https://doi.org/10.1007/s12275-019-9065-z
  • 51 View
  • 0 Download
  • 3 Web of Science
  • 2 Crossref
AbstractAbstract
The yeast Saccharomyces cerevisiae has two isoforms of NADP+-dependent glutamate dehydrogenase (Gdh1 and Gdh3) that catalyze the synthesis of glutamate from α-ketoglutarate and NH4 +. In the present study, we confirmed that Gdh3, but not Gdh1, mainly contributes to the oxidative stress resistance of stationary-phase cells and found evidence suggesting that the insignificance of Gdh1 to stress resistance is possibly resulted from conditional and reversible aggregation of Gdh1 into punctuate foci initiated in parallel with postdiauxic growth. Altered localization to the mitochondria or peroxisomes prevented Gdh1, which was originally localized in the cytoplasm, from stationary phase-specific aggregation, suggesting that some cytosolic factors are involved in the process of Gdh1 aggregation. Glucose starvation triggered the transition of the soluble form of Gdh1 into the insoluble aggregate form, which could be redissolved by replenishing glucose, without any requirement for protein synthesis. Mutational analysis showed that the N-terminal proximal region of Gdh1 (NTP1, aa 21-26, TLFEQH) is essential for glucose starvation-induced aggregation. We also found that the substitution of NTP1 with the corresponding region of Gdh3 (NTP3) significantly increased the contribution of the mutant Gdh1 to the stress resistance of stationary-phase cells. Thus, this suggests that NTP1 is responsible for the negligible role of Gdh1 in maintaining the oxidative stress resistance of stationary- phase cells and the stationary phase-specific stresssensitive phenotype of the mutants lacking Gdh3.

Citations

Citations to this article as recorded by  
  • Genomic characterization of denitrifying methylotrophic Pseudomonas aeruginosa strain AAK/M5 isolated from municipal solid waste landfill soil
    Ashish Kumar Singh, Rakesh Kumar Gupta, Hemant J. Purohit, Anshuman Arun Khardenavis
    World Journal of Microbiology and Biotechnology.2022;[Epub]     CrossRef
  • Effects of Molecular Crowding and Betaine on HSPB5 Interactions, with Target Proteins Differing in the Quaternary Structure and Aggregation Mechanism
    Vera A. Borzova, Svetlana G. Roman, Anastasiya V. Pivovarova, Natalia A. Chebotareva
    International Journal of Molecular Sciences.2022; 23(23): 15392.     CrossRef
Research Support, Non-U.S. Gov'ts
Relationships between the use of Embden Meyerhof pathway (EMP) or Phosphoketolase pathway (PKP) and lactate production capabilities of diverse Lactobacillus reuteri strains
Grégoire Burgé , Claire Saulou-Bérion , Marwen Moussa , Florent Allais , Violaine Athes , Henry-Eric Spinnler
J. Microbiol. 2015;53(10):702-710.   Published online October 2, 2015
DOI: https://doi.org/10.1007/s12275-015-5056-x
  • 51 View
  • 0 Download
  • 23 Crossref
AbstractAbstract
The aims of this study is to compare the growth and glucose metabolism of three Lactobacillus reuteri strains (i.e. DSM 20016, DSM 17938, and ATCC 53608) which are lactic acid bacteria of interest used for diverse applications such as probiotics implying the production of biomass, or for the production of valuable chemicals (3-hydroxypropionaldehyde, 3-hydroxypropionic acid, 1,3-propanediol). However, the physiological diversity inside the species, even for basic metabolisms, like its capacity of acidification or glucose metabolism, has not been studied yet. In the present work, the growth and metabolism of three strains representative of the species diversity have been studied in batch mode. The strains were compared through characterization of growth kinetics and evaluation of acidification kinetics, substrate consumption and product formation. The results showed significant differences between the three strains which may be explained, at least in part, by variations in the distribution of carbon source between two glycolytic pathways during the bacterial growth: the phosphoketolase or heterolactic pathway (PKP) and the Embden-Meyerhof pathway (EMP). It was also shown that, in the context of obtaining a large amount of biomass, DSM 20016 and DSM 17938 strains were the most effective in terms of growth kinetics. The DSM 17938 strain, which shows the more significant metabolic shift from EMP to PKP when the pH decreases, is more effective for lactate production.

Citations

Citations to this article as recorded by  
  • Exploitation of microbial activities at low pH to enhance planetary health
    Merve Atasoy, Avelino Álvarez Ordóñez, Adam Cenian, Aleksandra Djukić-Vuković, Peter A Lund, Fatih Ozogul, Janja Trček, Carmit Ziv, Daniela De Biase
    FEMS Microbiology Reviews.2024;[Epub]     CrossRef
  • Estimating the contribution of the porcine fecal core microbiota to metabolite production via mathematical modeling and in vitro fermentation
    Salvatore Galgano, Helen Kettle, Andrew Free, Jos G. M. Houdijk, Vanni Bucci
    mSystems.2024;[Epub]     CrossRef
  • Solid‐state fermentation: Bioconversions and impacts on bioactive and nutritional compounds in oats
    Stella Green, Graham T. Eyres, Dominic Agyei, Biniam Kebede
    Comprehensive Reviews in Food Science and Food Safety.2024;[Epub]     CrossRef
  • Characterization of nuvita biosearch center (NBC) isolated lactic acid bacteria strains from human origin and determination of growth kinetic profiles of selected cultures under bioreactor
    Akif Emre Kavak, İnci Zent, Ezgi Metin Sağır, Gülistan Öncü, Feride İrem Şimşek
    Annals of Microbiology.2024;[Epub]     CrossRef
  • Assessment of autochthonous lactic acid bacteria as starter culture for improving traditional Chinese Dongbei Suancai fermentation
    Yujuan Zhao, Zijian Zhao, Yansong Gao, Ge Yang, Xiaoxiao Liu, Ruochen Huang, Wei Liang, Shengyu Li
    LWT.2023; 178: 114615.     CrossRef
  • Mannitol Production by Heterofermentative Lactic Acid Bacteria: a Review
    Juan Gilberto Martínez-Miranda, Isaac Chairez, Enrique Durán-Páramo
    Applied Biochemistry and Biotechnology.2022; 194(6): 2762.     CrossRef
  • Production of high-value added exopolysaccharide by biotherapeutic potential Lactobacillus reuteri strain
    Daniel Joe Dailin, Shanmugaprakasham Selvamani, Khaw Michelle, Yanti Maslina Mohd Jusoh, Lai Fatt Chuah, Awais Bokhari, Hesham Ali El Enshasy, Muhammad Mubashir, Pau Loke Show
    Biochemical Engineering Journal.2022; 188: 108691.     CrossRef
  • High-resolution structure of phosphoketolase from Bifidobacterium longum determined by cryo-EM single-particle analysis
    Kunio Nakata, Naoyuki Miyazaki, Hiroki Yamaguchi, Mika Hirose, Tatsuki Kashiwagi, Nidamarthi H.V. Kutumbarao, Osamu Miyashita, Florence Tama, Hiroshi Miyano, Toshimi Mizukoshi, Kenji Iwasaki
    Journal of Structural Biology.2022; 214(2): 107842.     CrossRef
  • In Silico Genomic and Metabolic Atlas of Limosilactobacillus reuteri DSM 20016: An Insight into Human Health
    Paisleigh Smythe, Georgios Efthimiou
    Microorganisms.2022; 10(7): 1341.     CrossRef
  • Changes and machine learning-based prediction in quality characteristics of sliced Korean cabbage (Brassica rapa L. pekinensis) kimchi: Combined effect of nano-foamed structure film packaging and subcooled storage
    So Yoon Park, Miran Kang, Suk-Min Yun, Jong-Bang Eun, Bo-Sung Shin, Ho Hyun Chun
    LWT.2022; 171: 114122.     CrossRef
  • Acids produced by lactobacilli inhibit the growth of commensal Lachnospiraceae and S24-7 bacteria
    Emma J. E. Brownlie, Danica Chaharlangi, Erin Oi-Yan Wong, Deanna Kim, William Wiley Navarre
    Gut Microbes.2022;[Epub]     CrossRef
  • Salinity enhances high optically active L-lactate production from co-fermentation of food waste and waste activated sludge: Unveiling the response of microbial community shift and functional profiling
    Xiang Li, Safeena Sadiq, Wenjuan Zhang, Yiren Chen, Xianbao Xu, Anees Abbas, Shanping Chen, Ruina Zhang, Gang Xue, Dominika Sobotka, Jacek Makinia
    Bioresource Technology.2021; 319: 124124.     CrossRef
  • Pre-fermentation of malt whisky wort using Lactobacillus plantarum and its influence on new-make spirit character
    Struan James Reid, Robert Alexander Speers, Nik Willoughby, William Bain Lumsden, Dawn Louise Maskell
    Food Chemistry.2020; 320: 126605.     CrossRef
  • Oriented Fermentation of Food Waste towards High-Value Products: A Review
    Qiao Wang, Huan Li, Kai Feng, Jianguo Liu
    Energies.2020; 13(21): 5638.     CrossRef
  • Effects of combining two lactic acid bacteria as a starter culture on model kimchi fermentation
    Jae-Jun Lee, Yun-Jeong Choi, Min Jung Lee, Sung Jin Park, Su Jin Oh, Ye-Rang Yun, Sung Gi Min, Hye-Young Seo, Sung-Hee Park, Mi-Ai Lee
    Food Research International.2020; 136: 109591.     CrossRef
  • Impact of the fermentation parameters pH and temperature on stress resilience of Lactobacillus reuteri DSM 17938
    Armando Hernández, Christer U. Larsson, Radoslaw Sawicki, Ed W. J. van Niel, Stefan Roos, Sebastian Håkansson
    AMB Express.2019;[Epub]     CrossRef
  • A metabolic reconstruction of Lactobacillus reuteri JCM 1112 and analysis of its potential as a cell factory
    Thordis Kristjansdottir, Elleke F. Bosma, Filipe Branco dos Santos, Emre Özdemir, Markus J. Herrgård, Lucas França, Bruno Ferreira, Alex T. Nielsen, Steinn Gudmundsson
    Microbial Cell Factories.2019;[Epub]     CrossRef
  • Towards sustainability of lactic acid and poly-lactic acid polymers production
    A. Djukić-Vuković, D. Mladenović, J. Ivanović, J. Pejin, L. Mojović
    Renewable and Sustainable Energy Reviews.2019; 108: 238.     CrossRef
  • Lactobacilli and pediococci as versatile cell factories – Evaluation of strain properties and genetic tools
    Elleke F. Bosma, Jochen Forster, Alex Toftgaard Nielsen
    Biotechnology Advances.2017; 35(4): 419.     CrossRef
  • Isothermal microcalorimetry for rapid viability assessment of freeze-dried Lactobacillus reuteri
    Armando Hernández Garcia, Anke M. Herrmann, Sebastian Håkansson
    Process Biochemistry.2017; 55: 49.     CrossRef
  • Conversion of Glycerol to 3-Hydroxypropanoic Acid by Genetically Engineered Bacillus subtilis
    Aida Kalantari, Tao Chen, Boyang Ji, Ivan A. Stancik, Vaishnavi Ravikumar, Damjan Franjevic, Claire Saulou-Bérion, Anne Goelzer, Ivan Mijakovic
    Frontiers in Microbiology.2017;[Epub]     CrossRef
  • Novel molecular, structural and evolutionary characteristics of the phosphoketolases from bifidobacteria and Coriobacteriales
    Radhey S. Gupta, Anish Nanda, Bijendra Khadka, Eugene A. Permyakov
    PLOS ONE.2017; 12(2): e0172176.     CrossRef
  • Redox Balance in Lactobacillus reuteri DSM20016: Roles of Iron-Dependent Alcohol Dehydrogenases in Glucose/ Glycerol Metabolism
    Lu Chen, Paul David Bromberger, Gavin Nieuwenhuiys, Rajni Hatti-Kaul, Shihui Yang
    PLOS ONE.2016; 11(12): e0168107.     CrossRef
Cyclic AMP-Receptor Protein Activates Aerobactin Receptor IutA Expression in Vibrio vulnificus
Choon-Mee Kim , Seong-Jung Kim , Sung-Heui Shin
J. Microbiol. 2012;50(2):320-325.   Published online April 27, 2012
DOI: https://doi.org/10.1007/s12275-012-2056-y
  • 24 View
  • 0 Download
  • 10 Scopus
AbstractAbstract
The ferrophilic bacterium Vibrio vulnificus can utilize the siderophore aerobactin of Escherichia coli for iron acquisition via its specific receptor IutA. This siderophore piracy by V. vulnificus may contribute to its survival and proliferation, especially in mixed bacterial environments. In this study, we examined the effects of glucose, cyclic AMP (cAMP), and cAMP-receptor protein (Crp) on iutA expression in V. vulnificus. Glucose dose-dependently repressed iutA expression. A mutation in cya encoding adenylate cyclase required for cAMP synthesis severely repressed iutA expression, and this change was recovered by in trans complementing cya or the addition of exogenous cAMP. Furthermore, a mutation in crp encoding Crp severely repressed iutA expression, and this change was recovered by complementing crp. Accordingly, glucose deprivation under iron-limited conditions is an environmental signal for iutA expression, and Crp functions as an activator that regulates iutA expression in response to glucose availability.
Purification and Biochemical Properties of a Glucose-Stimulated β-D-Glucosidase Produced by Humicola grisea var. thermoidea Grown on Sugarcane Bagasse
Cesar Vanderlei Nascimento , Flávio Henrique Moreira Souza , Douglas Chodi Masui , Francisco Assis Leone , Rosane Marina Peralta , João Atílio Jorge , Rosa Prazeres Melo Furriel
J. Microbiol. 2010;48(1):53-62.   Published online March 11, 2010
DOI: https://doi.org/10.1007/s12275-009-0159-x
  • 36 View
  • 0 Download
  • 57 Scopus
AbstractAbstract
The effect of several carbon sources on the production of mycelial-bound β-glucosidase by Humicola grisea var. thermoidea in submerged fermentation was investigated. Maximum production occurred when cellulose was present in the culture medium, but higher specific activities were achieved with cellobiose or sugarcane bagasse. Xylose or glucose (1%) in the reaction medium stimulated β-glucosidase activity by about 2-fold in crude extracts from mycelia grown in sugarcane bagasse. The enzyme was purified by ammonium sulfate precipitation, followed by Sephadex G-200 and DEAE-cellulose chromatography, showing a single band in PAGE and SDS-PAGE. The β-glucosidase had a carbohydrate content of 43% and showed apparent molecular masses of 57 and 60 kDa, as estimated by SDS-PAGE and gel filtration, respectively. The optimal pH and temperature were 6.0 and 50°C, respectively. The purified enzyme was thermostable up to 60 min in water at 55°C and showed half-lives of 7 and 14 min when incubated in the absence or presence of 50 mM glucose, respectively, at 60°C. The enzyme hydrolyzed p-nitrophenyl-β-D-glucopyranoside, p-nitrophenyl-β-galactopyranoside, p-nitrophenyl-β-D-fucopyranoside, p-nitrophenyl-β-D-xylopyranoside, o-nitrophenyl-β-Dgalactopyranoside, lactose, and cellobiose. The best synthetic and natural substrates were p-nitrophenyl-β-Dfucopyranoside and cellobiose, respectively. Purified enzyme activity was stimulated up to 2-fold by glucose or xylose at concentrations from 25 to 200 mM. The addition of purified or crude β-glucosidase to a reaction medium containing Trichoderma reesei cellulases increased the saccharification of sugarcane bagasse by about 50%. These findings suggest that H. grisea var. thermoidea β-glucosidase has a potential for biotechnological applications in the bioconversion of lignocellulosic materials.
Molecular Cloning and Expression of a Thermostable Xylose (Glucose) Isomerase Gene, xylA, from Streptomyces chibaensis J-59
Gil-Jae Joo , Jae-Ho Shin , Gun-Young Heo , Young-Mog Kim , In-Koo Rhee
J. Microbiol. 2005;43(1):34-37.
DOI: https://doi.org/2141 [pii]
  • 38 View
  • 0 Download
AbstractAbstract
In the present study, the xylA gene encoding a thermostable xylose (glucose) isomerase was cloned from Streptomyces chibaensis J-59. The open reading frame of xylA (1167 bp) encoded a protein of 388 amino acids with a calculated molecular mass of about 43 kDa. The XylA showed high sequence homology (92% identity) with that of S. olivochromogenes. The xylose (glucose) isomerase was expressed in Escherichia coli and purified. The purified recombinant XylA had an apparent molecular mass of 45 kDa, which corresponds to the molecular mass calculated from the deduced amino acid and that of the purified wild-type enzyme. The N-terminal sequences (14 amino acid residues) of the purified protein revealed that the sequences were identical to that deduced from the DNA sequence of the xylA gene. The optimum temperature of the purified enzyme was 85oC and the enzyme exhibited a high level of heat stability.
Bacterial Aggregates Formation After Addition of Glucose in Lake Baikal Water
Lev P. Spiglazov , Valentin V. Drucker , Tae Seok Ahn
J. Microbiol. 2004;42(4):357-360.
DOI: https://doi.org/2098 [pii]
  • 36 View
  • 0 Download
AbstractAbstract
For determining the process of bacterial aggregation, glucose was added into water from Lake Baikal which had been stored for seven months. In the presence of a higher concentration of glucose, the abundance of single bacteria and aggregates were higher, but the biovolumes of both bacteria were similar. Theses results mean that both free-living and aggregated bacteria have similar maximum sizes and that aggregates are forming with available organic materials. With available organic materials, the biovolume of aggregates becomes larger.
Optimal Fermentation Conditions for Enhanced Glutathione Production by Saccharomyces cerevisiae FF-8
Jae-Young Cha , Jin-Chul Park , Beong-Sam Jeon , Young-Choon Lee , Young-Su Cho
J. Microbiol. 2004;42(1):51-55.
DOI: https://doi.org/2000 [pii]
  • 43 View
  • 0 Download
AbstractAbstract
The influence of feedstock amino acids, salt, carbon and nitrogen sources on glutathione production by Saccharomyces cerevisiae FF-8 was investigated. Glucose, yeast extract, KH_2PO_4, and L-cysteine were found to be suitable feedstock. Highest glutathione production was obtained after cultivation with shaking for 72 h in a medium containing glucose 3.0% (w/v), yeast extract 3.0%, KH_2PO_4 0.06% and L-cysteine 0.06%. The glutathione concentration achieved using this medium increased 2.27-fold to 204 mg/l compared to YM basal medium.
Published Erratum
[Erratum] A split face study on the effect of an anti-acne product containing fermentation products of Enterococcus faecalis CBT SL-5 on skin microbiome modification and acne improvement
Hye Sung Han , Sun Hye Shin , Bo-Yun Choi , Nayeon Koo , Sanghyun Lim , Dooheon Son , Myung Jun Chung , Kui Young Park , Woo Jun Sul
J. Microbiol. 2022;60(7):766-766.
DOI: https://doi.org/10.1007/s12275-022-1682-2
  • 52 View
  • 0 Download
  • 1 Crossref

Citations

Citations to this article as recorded by  
  • Skin Microbiome and Acne: Microbial Imbalances and Impact – Interview with Three Key Opinion Leaders
    Brigitte Scott
    EMJ Dermatology.2024; : 83.     CrossRef
Physiological importance of trypsin-like protease during morphological differentiation of streptomycetes
Kim, In Seop , Kang, Sung Gyun , Lee, Kye Joon
J. Microbiol. 1995;33(4):315-321.
  • 35 View
  • 0 Download
AbstractAbstract
The relationship between morphological differentiation and production of trypsin-like protease (TLP_ in streptomycetes was studied. All the Streptomyces spp. In this study produced TLP just before the onset of aerial mycelium formation. Addition of TLP inhibitor, TLCK, to the top surface of colonies inhibited aerial mycelium formation as well as TLP inhibitor, TLCK, to the top surface of colonies inhibited aerial mycelium formation as well as TLP activity. Addition of 2% glucose to the Bennett agar medium repressed both the aerial mycelium formation and TLP production in S. abuvaviensis, S. coelicolor A3(2), S exfoliatus, S. microflavus, S. roseus, s. lavendulae, and S. rochei. However the addition of glucose did not affect S. limosus, S. felleus, S. griseus, S. phaechromogenes, and S. rimosus. The glucose repression on aerial mycelium formation and production of TLP was relieved by the addition of glucose anti-metabolite (methyl α-glucopyranoside). Therefore, it was concluded that TLP production is coordinately regulated with morphological differentiation and TLP activity is essential for morphological differentiation in streptomycetes. The proposed role of TLP is that TLP participates in the degradation of substrate mycelium protein for providing nutrient for aerial mycelial growth.
Isolation of Glucose Utilizing Mutant of Alcaligenes eutrophus, its Substrate Selectivity, and Accumulation of Poly-β-hydroxybutyrate
Kim, Hye Yeon , Park, Jin Seo , Shin, Hyun Dong , Lee, yong Hyun
J. Microbiol. 1995;33(1):51-58.
  • 38 View
  • 0 Download
AbstractAbstract
A glucose utilizing mutant was selected from parent strain Alcaligenes eutrophus H16, and named as Glu-9. The mechanisms of glucose utilization of the mutant Glu-9 was investigated by measuring the D-[1-¹⁴C] glucose transport activity and the activities of key enzymes related to glucose and fructose uptake via facilitated diffusion. The uptaken glucose seems to activate key enzymes related to glucose matabolism. The selectivity between glucose and fructose of mutant Glu-9 was also analyzed by measuring glucose transport activity and enzyme activities under the various cultivation conditions using different carbon sources. Mutant Alcaligenes eutrophus Glu-9 preferentially consumed fructose from mixed substrates of glucose and fructose due to the inhibition of fructose to glucose transport activity. The characteristics of cell growth and PHB accumulation of Alcaligenes eutrophus Glu-9 were examined under various cultural conditions. Mutant strain Glu-9 showed tolerance in high concentration of glucose and increased yield of PHB production.
Incorpotation and production of glucose in Lake Soyang
kwag, No Tae , Choi, Seung Ik , Ahn, Tae Young , Ahn, Tae Seok
J. Microbiol. 1995;33(1):74-79.
  • 44 View
  • 0 Download
AbstractAbstract
Kinetics of heterotrophic activity (glucose uptake) and extracellular enzyme activity(β-glucosidase, cellobiohydrolase) and cell numbers were measured in Lake Soyang during phytoplankton bloom development and after its breakdown. V_max for glucose was lower during Diatom bloom and that was higher after its breakdown. But the increase ion β-glucosidase activity was detected in late of Diatom bloom. Glucose uptake did not associated with β-glucosidase activity. The tight relationship between β-glucosidase and the incorporation of glucose by bacteria was not shown and the significance of depolymerization on the incorporation of glucose in lake water are discussed.

Journal of Microbiology : Journal of Microbiology
TOP