Journal Article
- Physiological roles of catalases Cat1 and Cat2 in Myxococcus xanthus
-
Kimura Yoshio , Yuri Yoshioka , Kie Toshikuni
-
J. Microbiol. 2022;60(12):1168-1177. Published online October 24, 2022
-
DOI: https://doi.org/10.1007/s12275-022-2277-7
-
-
15
View
-
0
Download
-
6
Citations
-
Abstract
- Catalases are key antioxidant enzymes in aerobic organisms.
Myxococcus xanthus expresses two monofunctional catalases,
small-subunit Cat1 and large-subunit Cat2. The Km of
H2O2 for recombinant Cat1 and Cat2 were 14.0 and 9.0 mM,
respectively, and the catalytic efficiency of Cat2 (kcat/Km =
500 sec-1 mM-1) was 4-fold higher than that of Cat1. The activity
ratio of Cat1 to Cat2 in the exponential growth phase
of M. xanthus was 1 to 3–4. A Cat1-deficient strain was constructed,
whereas a Cat2-deficient strain could not be produced.
In H2O2-supplemented medium, the cat1 mutant exhibited
marked growth retardation and a longer generation
time than the wild-type (wt) strain. After 2 h of incubation
in 0.5 mM H2O2-supplemented medium, the catalase activity
of the wt strain significantly increased (by 64-fold), but that
of the cat1 mutant strain did not. Under starvation-induced
developmental conditions, catalase activity was induced by
approximately 200-fold in both wt and cat1 strains, although
in the mutant the activity increase as well as spore formation
occurred one day later, indicating that the induction of catalase
activity during starvation was due to Cat2. In wt starved
cells, catalase activity was not induced by H2O2. These results
suggest that Cat2 is the primary housekeeping catalase
during M. xanthus growth and starvation-induced development,
whereas Cat1 may have a complementary role, being
responsible for the rapid degradation of H2O2 in proliferating
vegetative cells subjected to oxidative stress.
Research Support, Non-U.S. Gov't
- Use of Clostridium septicum Alpha Toxins for Isolation of Various Glycosylphosphatidylinositol-Deficient Cells
-
Dong-Jun Shin , Hyon E. Choy , Yeongjin Hong
-
J. Microbiol. 2005;43(3):266-271.
-
DOI: https://doi.org/2214 [pii]
-
-
Abstract
- In eukaryotic cells, various proteins are anchored to the plasma membrane through glycosylphosphatidylinositol (GPI). To study the biosynthetic pathways and modifications of GPI, various mutant cells have been isolated from the cells of Chinese hamster ovaries (CHO) supplemented with several exogenous genes involved in GPI biosynthesis using aerolysin, a toxin secreted from gram-negative bacterium Aeromonas hydrophila. Alpha toxin from Gram-positive bacterium Clostridium septicum is homologous to large lobes (LL) of aerolysin, binds GPI-anchored proteins and possesses a cell-destroying mechanism similar to aerolysin. Here, to determine whether alpha toxins can be used as an isolation tool of GPI-mutants, like aerolysin, CHO cells stably transfected with several exogenous genes involved in GPI biosynthesis were chemically mutagenized and cultured in a medium containing alpha toxins. We isolated six mutants highly resistant to alpha toxins and deficient in GPI biosynthesis. By genetic complementation, we determined that one mutant cell was defective of the second subunit of dolichol phosphate mannose synthase (DPM2) and other five cells were of a putative catalytic subunit of inositol acyltransferase (PIG-W). Therefore, C. septicum alpha toxins are a useful screening probe for the isolation of various GPI-mutant cells.