Search
- Page Path
-
HOME
> Search
Journal Article
- Analysis of the L-malate biosynthesis pathway involved in poly(β-L-malic acid) production in Aureobasidium melanogenum GXZ-6 by addition of metabolic intermediates and inhibitors
-
Wei Zeng , Bin Zhang , Qi Liu , Guiguang Chen , Zhiqun Liang
-
J. Microbiol. 2019;57(4):281-287. Published online February 5, 2019
-
DOI: https://doi.org/10.1007/s12275-019-8424-0
-
-
11
View
-
0
Download
-
13
Citations
-
Abstract
- Poly(β-L-malic acid) (PMA) is a promising polyester formed
from L-malate in microbial cells. Malate biosynthesis is crucial
for PMA production. Previous studies have shown that
the non-oxidative pathway or oxidative pathway (TCA cycle)
is the main biosynthetic pathway of malate in most of PMAproducing
strains, while the glyoxylate cycle is only a supplementary
pathway. In this study, we investigated the effect
of exogenous metabolic intermediates and inhibitors of the
malate biosynthetic pathway on PMA production by Aureobasidium
melanogenum GXZ-6. The results showed that PMA
production was stimulated by maleic acid (a fumarase inhibitor)
and sodium malonate (a succinate dehydrogenase inhibitor)
but inhibited by succinic acid and fumaric acid. This
indicated that the TCA cycle might not be the only biosynthetic
pathway of malate. In addition, the PMA titer increased
by 18.1% upon the addition of glyoxylic acid after 72 h of fermentation,
but the PMA titer decreased by 7.5% when itaconic
acid (an isocitrate lyase inhibitor) was added, which indicated
that malate for PMA production was synthesized significantly
via the glyoxylate cycle rather than the TCA cycle. Furthermore,
in vitro enzyme activities of the TCA and glyoxylate
cycles suggested that the glyoxylate cycle significantly contributed
to the PMA production, which is contradictory to what
has been reported previously in other PMA-producing A.
pullulans.
TOP