Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
3 "group I intron"
Filter
Filter
Article category
Keywords
Publication year
Research Support, Non-U.S. Gov't
Variations of SSU rDNA Group I Introns in Different Isolates of Cordyceps militaris and the Loss of an Intron during Cross-Mating
Tiantian Lian , Tao Yang , Junde Sun , Suping Guo , Huaijun Yang , Caihong Dong
J. Microbiol. 2014;52(8):659-666.   Published online July 4, 2014
DOI: https://doi.org/10.1007/s12275-014-3681-4
  • 11 View
  • 0 Download
  • 7 Citations
AbstractAbstract
Cordyceps militaris, the type species of genus Cordyceps, is one of the most popular mushrooms and a nutraceutical in eastern Asia. It is considered a model organism for the study of Cordyceps species because it can complete its life cycle when cultured in vitro. In the present study, the occurrence and sequence variation of SSU rDNA group I introns, Cmi.S943 and Cmi.S1199, among different isolates of C. militaris were analyzed. Based on the secondary structure predictions, the Cmi.S943 intron has been placed in subgroup IC1, and the Cmi.S1199 intron has been placed in subgroup IE. No significant similarity between Cmi.S943 and Cmi.S1199 suggested different origins. Three genotypes, based on the frequency and distribution of introns, were described to discriminate the 57 surveyed C. militaris strains. It was found that the genotype was related to the stroma characteristics. The stromata of all of the genotype II strains, which possessed only Cmi.S943, could produce perithecium. In contrast, the stromata of all genotype III strains, which had both Cmi.S943 and Cmi.S1199, could not produce perithecium. Cmi.S1199 showed the lowest level of intra-specific variation among the tested strains. Group I introns can be lost during strain cross-mating. Therefore, we presumed that during cross-mating and recombination, intron loss could be driven by positive Darwinian selection due to the energetic cost of transcribing long introns.
Journal Article
Comparative Analysis of Intracellular Trans-Splicing Ribozyme Activity Against Hepatitis C Virus Internal Ribosome Entry Site
Kyung-Ju Ryu Seong-Wook Lee
J. Microbiol. 2004;42(4):361-364.
DOI: https://doi.org/2097 [pii]
  • 9 View
  • 0 Download
AbstractAbstract
Internal ribosome entry site (IRES) of the hepatitis C virus (HCV) is known to be essential for HCV replication and most conserved among HCV variants. Hence, IRES RNA is a good therapeutic target for RNA-based inhibitors, such as ribozymes. We previously proposed a new anti-HCV modulation strategy based on trans-splicing ribozymes, which can selectively replace HCV transcripts with a new RNA that exerts anti-HCV activity. To explore this procedure, sites which are accessible to ribozymes in HCV IRES were previously determined by employing an RNA mapping method in vitro. In this study, we evaluate the intracellular accessibility of the ribozymes by comparing the trans-splicing activities in cells of several ribozymes targeting different sites of the HCV IRES RNA. We assessed the intracellular activities of the ribozymes by monitoring their target-specific induction degree of both reporter gene activity and cytotoxin expression. The ribozyme capable of targeting the most accessible site identified by the mapping studies then harbored the most active trans-splicing activity in cells. These results suggest that the target sites predicted to be accessible are truly the most accessible in the cells, and thus, could be applied to the development of various RNA-based anti-HCV therapies.
Replacement of Thymidine Phosphorylase RNA with Group I Intron of Tetrahymena thermophila by Targeted Trans-Splicing
Young-Hee Park , Heung-Su Jung , Byung-Su Kwon , Seong-Wook Lee
J. Microbiol. 2003;41(4):340-344.
  • 15 View
  • 0 Download
AbstractAbstract
The group I intron from Tetrahymena thermophila has been demonstrated to employ splicing reactions with its substrate RNA in the trans configuration. Moreover, we have recently shown that the transsplicing group I ribozyme can replace HCV-specific transcripts with a new RNA that exerts anti-viral activity. In this study, we explored the potential use of RNA replacement for cancer treatment by developing trans-splicing group I ribozymes, which could replace tumor-associated RNAs with the RNA sequence attached to the 3' end of the ribozymes. Thymidine phosphorylase (TP) RNA was chosen as a target RNA because it is known as a valid cancer prognostic factor. By performing an RNA mapping strategy that is based on a trans-splicing ribozyme library, we first determined which regions of the TP RNA are accessible to ribozymes, and found that the leader sequences upstream of the AUG start codon appeared to be particularly accessible. Next, we assessed the ribozyme activities by comparing trans-splicing activities of several ribozymes that targeted different regions of the TP RNA. This assessment was performed to verify if the target site predicted to be accessible is truly the most accessible. The ribozyme that could target the most accessible site, identified by mapping studies, was the most active with high fidelity in vitro. Moreover, the specific trans-splicing ribozyme reacted with and altered the TP transcripts by transferring an intended 3' exon tag sequence onto the targeted TP RNA in mammalian cells with high fidelity. These results suggest that the Tetrahymena ribozyme can be utilized to replace TP RNAs in tumors with a new RNA harboring anti-cancer activity, which would revert the malignant phenotype.

Journal of Microbiology : Journal of Microbiology
TOP