Review
- Host–microbial interactions in metabolic diseases: from diet to immunity
-
Ju-Hyung Lee , Joo-Hong Park
-
J. Microbiol. 2022;60(6):561-575. Published online May 5, 2022
-
DOI: https://doi.org/10.1007/s12275-022-2087-y
-
-
18
View
-
0
Download
-
3
Citations
-
Abstract
- Growing evidence suggests that the gut microbiome is an important
contributor to metabolic diseases. Alterations in microbial
communities are associated with changes in lipid metabolism,
glucose homeostasis, intestinal barrier functions,
and chronic inflammation, all of which can lead to metabolic
disorders. Therefore, the gut microbiome may represent a
novel therapeutic target for obesity, type 2 diabetes, and nonalcoholic
fatty liver disease. This review discusses how gut microbes
and their products affect metabolic diseases and outlines
potential treatment approaches via manipulation of the
gut microbiome. Increasing our understanding of the interactions
between the gut microbiome and host metabolism
may help restore the healthy symbiotic relationship between
them.
Research Support, Non-U.S. Gov'ts
- NOTE] Isolation and Characterization of Histamine-Producing Bacteria from Fermented Fish Products
-
Jin Seok Moon , So-Young Kim , Kyung-Ju Cho , Seung-Joon Yang , Gun-Mook Yoon , Hyun-Ju Eom , Nam Soo Han
-
J. Microbiol. 2013;51(6):881-885. Published online December 19, 2013
-
DOI: https://doi.org/10.1007/s12275-013-3333-0
-
-
6
View
-
0
Download
-
13
Citations
-
Abstract
- Histamine is mainly produced by microorganisms that are
found in fermented foods, and is frequently involved in food
poisoning. Two histamine-producing bacteria were isolated
from fermented fish products, anchovy sauce, and sand lance
sauce by using a histidine decarboxylating medium. The
species were identified as Bacillus licheniformis A7 and B.
coagulans SL5. Multiplex PCR analysis showed the presence
of the conserved histidine decarboxylase (hdc) gene in the
chromosome of these bacteria. B. licheniformis A7 and B.
coagulans SL5 produced the maximum amount of histamine
(22.3±3.5 and 15.1±1.5 mg/L, respectively). As such, they
were determined to be potential histamine-producing bacteria
among the tested cultures.
- Protein-Protein Interactions between Histidine Kinases and Response Regulators of Mycobacterium tuberculosis H37Rv
-
Ha-Na Lee , Kwang-Eun Jung , In-Jeong Ko , Hyung Suk Baik , Jeong-Il Oh
-
J. Microbiol. 2012;50(2):270-277. Published online April 27, 2012
-
DOI: https://doi.org/10.1007/s12275-012-2050-4
-
-
16
View
-
0
Download
-
25
Citations
-
Abstract
- Using yeast two-hybrid assay, we investigated protein-protein
interactions between all orthologous histidine kinase
(HK)/response regulator (RR) pairs of M. tuberculosis H37Rv
and identified potential protein-protein interactions between
a noncognate HK/RR pair, DosT/NarL. The protein
interaction between DosT and NarL was verified by phosphotransfer
reaction from DosT to NarL. Furthermore, we
found that the DosT and DosS HKs, which share considerable
sequence similarities to each other and form a twocomponent
system with the DosR RR, have different crossinteraction
capabilities with NarL: DosT interacted with
NarL, while DosS did not. The dimerization domains of
DosT and DosS were shown to be sufficient to confer specificity
for DosR, and the different cross-interaction abilities
of DosS and DosT with NarL were demonstrated to be attributable
to variations in the amino acid sequences of the
α2-helices of their dimerization domains.
- Ligand-Receptor Recognition for Activation of Quorum Sensing in Staphylococcus aureus
-
Li-Chun Chen , Li-Tse Tsou , Feng-Jui Chen
-
J. Microbiol. 2009;47(5):572-581. Published online October 24, 2009
-
DOI: https://doi.org/10.1007/s12275-009-0004-2
-
-
12
View
-
0
Download
-
13
Citations
-
Abstract
- The accessory gene regulator (agr) locus controls many of the virulence toxins involved in Staphylococcus aureus pathogenesis, and can be divided into four specificity groups. AgrC is the only group-specific receptor to mediate both intra-group activation and inter-group inhibition. We studied the ligand-receptor recognition of the agr system in depth by using a luciferase reporter system to identify the key residues responsible for AgrC activation in two closely related agr groups, AgrC-I, and AgrC-IV. Fusion PCR and site-directed mutagenesis were used to screen for functional residues of AgrC. Our data suggest that for AgrC-IV activation, residue 101 is critical for activating the receptor. In contrast, the key residues for the activation of AgrC-I are located at residues 49~59, 107, and 116. However, three residue changes, T101A, V107S, I116S, are sufficient to convert the AIP recognizing specificity from AgrC-IV to AgrC-I.
- Chemical Midification of Purin Nucleoside Phosphorulase in Serratia marcescens
-
Choi , Hye Seon
-
J. Microbiol. 1998;36(2):74-79.
-
-
-
Abstract
- Serratia marcescens purine nucleoside phosphorylase (PNP) has been purified and characterized. The physical and kinetic properties have been previously described(Choi, H.S. 1998. Biosci. Biotechnol. Biochem. 62, 667-671). Chemical modification of the enzyme was attempted to gain insight on the active site. The enzyme was inactivated in a time dependent manner by phenylglyoxal or diethylpyrocarbonate (DEPC). There was a linear relationship between the observed rate of inactivation and the phenylglyoxal or DEPC concentration. At 30℃ the bimolecular rate constant for the modification was 0.22 mM^-1 min^-1 in 50 mM NaHCO_3 buffer, pH 7.5, for phenylglyoxal and 1.33 mM^-1min^-1 in 50 mM sodium cotrate, pH 6.0, for DEPC. Preincubation with saturated solutions of substrates protected the enzyme from inhibition by kphenylglyoxal and DEPC, indicating that reactions with these reagents were directed at arginyl and histidyl residues, respectively, which are essential for the catalytic function of the enzyme.