Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
2 "honey bee"
Filter
Filter
Article category
Keywords
Publication year
Journal Article
Acinetobacter apis sp. nov., Isolated from the Intestinal Tract of a Honey Bee, Apis mellifera
Pil Soo Kim , Na-Ri Shin , Joon Yong Kim , Ji-Hyun Yun , Dong-Wook Hyun , Jin-Woo Bae
J. Microbiol. 2014;52(8):639-645.   Published online August 1, 2014
DOI: https://doi.org/10.1007/s12275-014-4078-0
  • 13 View
  • 0 Download
  • 35 Citations
AbstractAbstract
A novel Gram-negative, obligate aerobic, non-motile, and both coccobacillus- and bacillus-shaped bacterium, designated strain HYN18T, was isolated from the intestinal tract of a honey bee (Apis mellifera). The isolate was oxidasenegative and catalase-positive. Strain HYN18T showed optimum growth at 25°C, pH 6–7, and in the presence of 1% (w/v) NaCl in trypticase soy broth medium. The isolate was negative for hydrolyses of starch, casein, gelatin and urea, indole production from tryptone and hemolysis on sheep blood agar. A phylogenetic analysis based on the 16S rRNA gene and rpoB gene sequence showed that strain HYN18T was most closely related to Acinetobacter nectaris SAP 763.2T and A. boissieri SAP 284.1T with 98.3% and 98.1% similarity (16S rRNA gene), respectively, and 84.4% similarity with Acinetobacter nectaris SAP 763.2T (rpoB gene). The major cellular fatty acids were summed features 3 (comprising C16:1ω7c/C16:1ω6c), C12:0 and C16:0. The main isoprenoid quinone was ubiquinone-9 (Q-9). The polar lipids of strain HYN18T were phosphatidylethanolamine, three unidentified lipids, an unidentified phospholipid and an unidentified glycolipid. The DNA G+C content was 40.6 mol%. DNADNA hybridization experiments indicated less than 33 ± 10% relatedness to the closest phylogenetic species, Acinetobacter nectaris SAP 763.2T. Thus, the phenotypic, phylogenetic and genotypic analyses indicate that strain HYN18T is a novel species within the genus Acinetobacter, for which the name Acinetobacter apis is proposed. The type strain is HYN18T (=KACC 16906T =JCM 18575T).
Research Support, Non-U.S. Gov't
Pyrosequencing Analysis of the Bacterial Communities in the Guts of Honey Bees Apis cerana and Apis mellifera in Korea
Jae-Hyung Ahn , In-Pyo Hong , Jeung-Im Bok , Byung-Yong Kim , Jaekyeong Song , Hang-Yeon Weon
J. Microbiol. 2012;50(5):735-745.   Published online November 4, 2012
DOI: https://doi.org/10.1007/s12275-012-2188-0
  • 16 View
  • 0 Download
  • 91 Citations
AbstractAbstract
The bacterial communities in the guts of the adults and larvae of the Asian honey bee Apis cerana and the European honey bee Apis mellifera were surveyed by pyrosequencing the 16S rRNA genes. Most of the gut bacterial 16S rRNA gene sequences were highly similar to the known honey bee-specific ones and affiliated with Pasteurellaceae or lactic acid bacteria (LAB). The numbers of operational taxonomic units (OTUs, defined at 97% similarity) were lower in the larval guts (6 or 9) than in the adult guts (18 or 20), and the frequencies of Pasteurellaceae-related OTUs were higher in the larval guts while those of LAB-related OTUs in the adult guts. The frequencies of Lactococcus, Bartonella, Spiroplasma, Enterobacteriaceae, and Flavobacteriaceae-related OTUs were much higher in A. cerana guts while Bifidobacterium and Lachnospiraceae-related OTUs were more abundant in A. mellfera guts. The bacterial community structures in the midguts and hindguts of the adult honey bees were not different for A. cerana, but significantly different for A. mellifera. The above results substantiated the previous observation that honey bee guts are dominated by several specific bacterial groups, and also showed that the relative abundances of OTUs could be markedly changed depending on the developmental stage, the location within the gut, and the honey bee species. The possibility of using the gut bacterial community as an indicator of honey bee health was discussed.

Journal of Microbiology : Journal of Microbiology
TOP