Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
40 "hydrogen"
Filter
Filter
Article category
Keywords
Publication year
Authors
Funded articles
Research Article
Comprehensive genomic and functional analysis of Leuconostoc lactic acid bacteria in alcohol and acetaldehyde metabolism
Joo-Han Gwak, Yun Ji Choi, Hina Ayub, Min Kyeong Seol, Hongik Kim, Man-Young Jung
J. Microbiol. 2025;63(2):e2410026.   Published online February 27, 2025
DOI: https://doi.org/10.71150/jm.2410026
  • 342 View
  • 19 Download
AbstractAbstract PDFSupplementary Material

Alcohol consumption can lead to the accumulation of harmful metabolites, such as acetaldehyde, contributing to various adverse health effects, including hangovers and liver damage. This study presents a comprehensive genomic and functional analysis of Leuconostoc suionicum VITA-PB2, a lactic acid bacterial strain isolated from kimchi, to elucidate its role in enhancing alcohol and acetaldehyde metabolism. Genomic characterization revealed key genes encoding alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH), providing insights into the metabolic capabilities of strain VITA-PB2. Phylogenomic analyses confirmed its taxonomic classification and genetic similarity to other Leuconostoc species. Functional validation through in vitro and in vivo experiments demonstrated superior ethanol and acetaldehyde decomposition abilities of strain VITA-PB2, with significant reductions in blood ethanol and acetaldehyde levels observed in rats administered with the strain. Further analysis indicated that while hepatic ADH activity did not significantly increase; however, ALDH expression was elevated. This suggests that the microbial ADH of strain VITA-PB2 contributed to ethanol breakdown, while both microbial and host ALDH facilitated acetaldehyde detoxification. These findings highlight the potential of strain VITA-PB2 as a functional probiotic for mitigating the toxic effects of alcohol consumption.

Journal Articles
Investigation of Bottleneck Enzyme Through Flux Balance Analysis to Improve Glycolic Acid Production in Escherichia coli
Jungyeon Kim, Ye-Bin Kim, Ju-Young Kim, Min-Ju Seo, Soo-Jin Yeom, Bong Hyun Sung
J. Microbiol. 2024;62(11):1023-1033.   Published online October 28, 2024
DOI: https://doi.org/10.1007/s12275-024-00175-4
  • 79 View
  • 0 Download
AbstractAbstract
Amid rising environmental concerns, attempts have been made to produce glycolic acid (GA) using microbial processes with renewable carbon resources instead of using chemicals. The Dahms pathway for GA production uses xylose as a substrate and consists of relatively simple enzymatic steps. However, employing it leads to a decrease in cell growth and GA productivity. Systematically identifying and addressing metabolic bottlenecks in the Dahms pathway are essential for efficient glycolic acid (GA) production have not yet been performed. Through metabolic flux balance analysis, we found that insufficient aldehyde dehydrogenase (AldA) activity lowers GA production and negatively affects cell growth due to reduced energy production. Thus, we discovered a novel AldA isolated from Buttiauxella agrestis (BaAldA) demonstrated a 1.69-fold lower KM and a 1.49-fold higher turnover rate (kcat/KM) than AldA from Escherichia coli (EcAldA). GA production in E. coli harboring BaAldA was 1.59 times higher than in the original strain. Fed-batch fermentation of E. coli harboring BaAldA produced 22.70 g/L GA with a yield of 0.497 g/gxylose (98.2% of the theoretical maximum yield in the Dahms pathway), showing a higher final yield for GA than previously reported in E. coli. Our novel BaAldA enzyme shows great potential for the production of GA using microorganisms or enzymes. Furthermore, our approach to identifying metabolic bottlenecks using flux balance analysis could be utilized to enhance the microbial production of various desirable products in future studies.
Those Nematode‑Trapping Fungi That are not Everywhere: Hints Towards Soil Microbial Biogeography
Wei Deng , Fa Zhang , Davide Fornacca , Xiao-Yan Yang , Wen Xiao
J. Microbiol. 2023;61(5):511-523.   Published online April 6, 2023
DOI: https://doi.org/10.1007/s12275-023-00043-7
  • 56 View
  • 0 Download
  • 2 Web of Science
  • 2 Crossref
AbstractAbstract
The existence of biogeography for microorganisms is a raising topic in ecology and researchers are employing better distinctions between single species, including the most rare ones, to reveal potential hidden patterns. An important volume of evidence supporting heterogeneous distributions for bacteria, archaea and protists is accumulating, and more recently a few efforts have targeted microscopic fungi. We propose an insight into this latter kingdom by looking at a group of soil nematode-trapping fungi whose species are well-known and easily recognizable. We chose a pure culture approach because of its reliable isolation procedures for this specific group. After morphologically and molecularly identifying all species collected from 2250 samples distributed in 228 locations across Yunnan province of China, we analyzed occurrence frequencies and mapped species, genera, and richness. Results showed an apparent cosmopolitan tendency for this group of fungi, including species richness among sites. However, only four species were widespread across the region, while nonrandom heterogeneous distributions were observed for the remaining 40 species, both in terms of statistical distribution of species richness reflected by a significant variance-to-mean ratio, as well as in terms of visually discernible spatial clusters of rare species and genera on the map. Moreover, several species were restricted to only one location, raising the question of whether endemicity exists for this microbial group. Finally, environmental heterogeneity showed a marginal contribution in explaining restricted distributions, suggesting that other factors such as geographical isolation and dispersal capabilities should be explored. These findings contribute to our understanding of the cryptic geographic distribution of microorganisms and encourage further research in this direction.

Citations

Citations to this article as recorded by  
  • Linking watershed formation with the phylogenetic distribution of a soil microscopic fungus in Yunnan Province, China
    Davide Fornacca, Wei Deng, Yaoquan Yang, Fa Zhang, Xiaoyan Yang, Wen Xiao
    BMC Microbiology.2024;[Epub]     CrossRef
  • Analysis of Nuclear Dynamics in Nematode-Trapping Fungi Based on Fluorescent Protein Labeling
    Liang Zhou, Zhiwei He, Keqin Zhang, Xin Wang
    Journal of Fungi.2023; 9(12): 1183.     CrossRef
Fus3 and Tpk2 protein kinases regulate the phosphorylation-dependent functions of RNA helicase Dhh1 in yeast mating and Ste12 protein expression
Jaehee Hwang , Daehee Jung , Jinmi Kim
J. Microbiol. 2022;60(8):843-848.   Published online July 14, 2022
DOI: https://doi.org/10.1007/s12275-022-2213-x
  • 41 View
  • 0 Download
AbstractAbstract
Decapping of mRNA is a key regulatory step for mRNA decay and translation. The RNA helicase, Dhh1, is known as a decapping activator and translation repressor in yeast Saccharomyces cerevisiae. Dhh1 also functions as a gene-specific positive regulator in the expression of Ste12, a mating-specific transcription factor. A previous study showed that the Nerminal phosphorylation of Dhh1 regulates its association with the mRNA-binding protein, Puf6, to affect the protein translation of Ste12. Here, we investigated the roles of the phosphorylated residues of Dhh1 in yeast mating process and Ste12 expression. The phospho-deficient mutation, DHH1- T10A, was associated with decreased diploid formation during mating and decreased level of the Ste12 protein in response to α-mating pheromone. A kinase overexpression analysis revealed that Ste12 protein expression was affected by overexpression of Fus3 MAP kinase or Tpk2 kinase. Tpk2 was shown to be responsible for phosphorylation of Dhh1 at Thr10. Our study shows that overexpression of Fus3 or Tpk2 alters the Dhh1-Puf6 protein interaction and thereby affects Ste12 protein expression.
Adaptation of Pseudomonas helmanticensis to fat hydrolysates and SDS: fatty acid response and aggregate formation
Ilya N. Zubkov , Anatoly P. Nepomnyshchiy , Vadim D. Kondratyev , Pavel N. Sorokoumov , Konstantin V. Sivak , Edward S. Ramsay , Sergey M. Shishlyannikov
J. Microbiol. 2021;59(12):1104-1111.   Published online October 26, 2021
DOI: https://doi.org/10.1007/s12275-021-1214-5
  • 47 View
  • 0 Download
  • 3 Web of Science
  • 3 Crossref
AbstractAbstract
An essential part of designing any biotechnological process is examination of the physiological state of producer cells in different phases of cultivation. The main marker of a bacterial cell’s state is its fatty acid (FA) profile, reflecting membrane lipid composition. Consideration of FA composition enables assessment of bacterial responses to cultivation conditions and helps biotechnologists understand the most significant factors impacting cellular metabolism. In this work, soil SDS-degrading Pseudomonas helmanticensis was studied at the fatty acid profile level, including analysis of rearrangement between planktonic and aggregated forms. The set of substrates included fat hydrolysates, SDS, and their mixtures with glucose. Such media are useful in bioplastic production since they can help incrementally lower overall costs. Conventional gas chromatography-mass spectrometry was used for FA analysis. Acridine orange-stained aggregates were observed by epifluorescence microscopy. The bacterium was shown to change fatty acid composition in the presence of hydrolyzed fats or SDS. These changes seem to be driven by the depletion of metabolizable substrates in the culture medium. Cell aggregation has also been found to be a defense strategy, particularly with anionic surfactant (SDS) exposure. It was shown that simple fluidity indices (such as saturated/ unsaturated FA ratios) do not always sufficiently characterize a cell's physiological state, and morphological examination is essential in cases where complex carbon sources are used.

Citations

Citations to this article as recorded by  
  • Effect of different diet composition on the fat profile of two different black soldier fly larvae populations
    M. Tognocchi, L. Abenaim, C. Adamaki-Sotiraki, G.C. Athanassiou, I.C. Rumbos, M. Mele, B. Conti, G. Conte
    animal.2024; 18(7): 101205.     CrossRef
  • Earth to Mars: A Protocol for Characterizing Permafrost in the Context of Climate Change as an Analog for Extraplanetary Exploration
    Kimberley R. Miner, Joseph Razzell Hollis, Charles E. Miller, Kyle Uckert, Thomas A. Douglas, Emily Cardarelli, Rachel Mackelprang
    Astrobiology.2023; 23(9): 1006.     CrossRef
  • Preparation of polyhydroxyalkanoates using Pseudomonas helmanticensis in non-sterile media containing glycerol and sodium dodecyl sulfate
    I. N. Zubkov, Yu. S. Bukin, P. N. Sorokoumov, S. M. Shishlyannikov
    Proceedings of Universities. Applied Chemistry and Biotechnology.2022; 12(3): 479.     CrossRef
Characterization of a novel phage depolymerase specific to Escherichia coli O157:H7 and biofilm control on abiotic surfaces
Do-Won Park , Jong-Hyun Park
J. Microbiol. 2021;59(11):1002-1009.   Published online October 6, 2021
DOI: https://doi.org/10.1007/s12275-021-1413-0
  • 55 View
  • 0 Download
  • 8 Web of Science
  • 6 Crossref
AbstractAbstract
The increasing prevalence of foodborne diseases caused by Escherichia coli O157:H7 as well as its ability to form biofilms poses major threats to public health worldwide. With increasing concerns about the limitations of current disinfectant treatments, phage-derived depolymerases may be used as promising biocontrol agents. Therefore, in this study, the characterization, purification, and application of a novel phage depolymerase, Dpo10, specifically targeting the lipopolysaccharides of E. coli O157, was performed. Dpo10, with a molecular mass of 98 kDa, was predicted to possess pectate lyase activity via genome analysis and considered to act as a receptor- binding protein of the phage. We confirmed that the purified Dpo10 showed O-polysaccharide degrading activity only for the E. coli O157 strains by observing its opaque halo. Dpo10 maintained stable enzymatic activities across a wide range of temperature conditions under 55°C and mild basic pH. Notably, Dpo10 did not inhibit bacterial growth but significantly increased the complement-mediated serum lysis of E. coli O157 by degrading its O-polysaccharides. Moreover, Dpo10 inhibited the biofilm formation against E. coli O157 on abiotic polystyrene by 8-fold and stainless steel by 2.56 log CFU/coupon. This inhibition was visually confirmed via fieldemission scanning electron microscopy. Therefore, the novel depolymerase from E. coli siphophage exhibits specific binding and lytic activities on the lipopolysaccharide of E. coli O157 and may be used as a promising anti-biofilm agent against the E. coli O157:H7 strain.

Citations

Citations to this article as recorded by  
  • Effect of Bacteriophages against Biofilms of Escherichia coli on Food Processing Surfaces
    Ana Brás, Márcia Braz, Inês Martinho, João Duarte, Carla Pereira, Adelaide Almeida
    Microorganisms.2024; 12(2): 366.     CrossRef
  • Bacteriophage–Host Interactions and the Therapeutic Potential of Bacteriophages
    Leon M. T. Dicks, Wian Vermeulen
    Viruses.2024; 16(3): 478.     CrossRef
  • Current Strategies for Combating Biofilm-Forming Pathogens in Clinical Healthcare-Associated Infections
    Rashmita Biswas, Bhawana Jangra, Ganapathy Ashok, Velayutham Ravichandiran, Utpal Mohan
    Indian Journal of Microbiology.2024; 64(3): 781.     CrossRef
  • Phage Adsorption to Gram-Positive Bacteria
    Audrey Leprince, Jacques Mahillon
    Viruses.2023; 15(1): 196.     CrossRef
  • Prevalence of Indigenous Antibiotic-Resistant Salmonella Isolates and Their Application to Explore a Lytic Phage vB_SalS_KFSSM with an Intra-Broad Specificity
    Jaein Choe, Su-Hyeon Kim, Ji Min Han, Jong-Hoon Kim, Mi-Sun Kwak, Do-Won Jeong, Mi-Kyung Park
    Journal of Microbiology.2023; 61(12): 1063.     CrossRef
  • Phages against Pathogenic Bacterial Biofilms and Biofilm-Based Infections: A Review
    Siyu Liu, Hongyun Lu, Shengliang Zhang, Ying Shi, Qihe Chen
    Pharmaceutics.2022; 14(2): 427.     CrossRef
Brevibacterium limosum sp. nov., Brevibacterium pigmenatum sp. nov., and Brevibacterium atlanticum sp. nov., three novel dye decolorizing actinobacteria isolated from ocean sediments
Shengxiang Pei , Siwen Niu , Fuquan Xie , Wenjing Wang , Shuang Zhang , Gaiyun Zhang
J. Microbiol. 2021;59(10):898-910.   Published online September 7, 2021
DOI: https://doi.org/10.1007/s12275-021-1235-0
  • 45 View
  • 0 Download
  • 8 Web of Science
  • 10 Crossref
AbstractAbstract
During a study of the marine actinobacterial biodiversity, a large number of Brevibacterium strains were isolated. Of these, five that have relatively low 16S rRNA gene similarity (98.5– 99.3%) with validly published Brevibacterium species, were chosen to determine taxonomic positions. On the basis of 16S rRNA gene sequence analysis and BOX-PCR fingerprinting, strains o2T, YB235T, and WO024T were selected as representative strains. Genomic analyses, including average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH), clearly differentiated the three strains from each other and from their closest relatives, with values ranging from 82.8% to 91.5% for ANI and from 26.7% to 46.5% for dDDH that below the threshold for species delineation. Strains YB235T, WO024T, and o2T all exhibited strong and efficient decolorization activity in congo red (CR) dyes, moderate decolorization activity in toluidine blue (TB) dyes and poor decolorization in reactive blue (RB) dyes. Genes coding for peroxidases and laccases were identified and accounted for these strains’ ability to effectively oxidize a variety of dyes with different chemical structures. Mining of the whole genome for secondary metabolite biosynthesis gene clusters revealed the presence of gene clusters encoding for bacteriocin, ectoine, NRPS, siderophore, T3PKS, terpene, and thiopeptide. Based on the phylogenetic, genotypic and phenotypic data, strains o2T, YB235T and WO024T clearly represent three novel taxa within the genus Brevibacterium, for which the names Brevibacterium limosum sp. nov. (type strain o2T = JCM 33844T = MCCC 1A09961T), Brevibacterium pigmenatum sp. nov. (type strain YB235T = JCM 33843T = MCCC 1A09842T) and Brevibacterium atlanticum sp. nov. (type strain WO024T = JCM 33846T = MCCC 1A16743T) are proposed.

Citations

Citations to this article as recorded by  
  • Brevibacterium litoralis sp. nov., a cellulose-degrading strain isolated from marine surface sediment
    Quan Yang, Aolin Zhao, Haifei Liu, Jiawei Li, Shujing Wu, Ying Huang, Jie Weng, Mingguo Jiang, Yi Jiang
    Antonie van Leeuwenhoek.2025;[Epub]     CrossRef
  • Functional genomics and taxonomic insights into heavy metal tolerant novel bacterium Brevibacterium metallidurans sp. nov. NCCP-602T isolated from tannery effluent in Pakistan
    Sadia Manzoor, Saira Abbas, Sobia Zulfiqar, Hong-Chuan Wang, Min Xiao, Wen-Jun Li, Muhammad Arshad, Iftikhar Ahmed
    Antonie van Leeuwenhoek.2024;[Epub]     CrossRef
  • Saxibacter everestensis gen. nov., sp. nov., A Novel Member of the Family Brevibacteriaceae, Isolated from the North Slope of Mount Everest
    Mao Tian, Shiyu Wu, Wei Zhang, Gaosen Zhang, Xue Yu, Yujie Wu, Puchao Jia, Binglin Zhang, Tuo Chen, Guangxiu Liu
    Journal of Microbiology.2024; 62(4): 277.     CrossRef
  • Omics-Based Approaches in Research on Textile Dye Microbial Decolorization
    Anna Jasińska, Aleksandra Walaszczyk, Katarzyna Paraszkiewicz
    Molecules.2024; 29(12): 2771.     CrossRef
  • Exploring actinobacteria isolated from coral originated from Tulamben Bali in inhibiting multidrug resistance bacteria
    Fajar Hidayaturohman, Aninditia Sabdaningsih, Diah Ayuningrum
    Asia Pacific Journal of Molecular Biology and Biotechnology.2024; : 101.     CrossRef
  • Comparative Analysis of How the Fecal Microbiota of Green-Winged Saltator (Saltator similis) Diverge among Animals Living in Captivity and in Wild Habitats
    Larissa Caló Zitelli, Gabriela Merker Breyer, Mariana Costa Torres, Luiza de Campos Menetrier, Ana Paula Muterle Varela, Fabiana Quoos Mayer, Cláudio Estêvão Farias Cruz, Franciele Maboni Siqueira
    Animals.2024; 14(6): 937.     CrossRef
  • Brevibacterium spongiae sp. nov., isolated from marine sponge Hymeniacidon sp.
    Mimi Zhang, Qianqian Song, Jin Sang, Zhiyong Li
    International Journal of Systematic and Evolutionary Microbiology .2023;[Epub]     CrossRef
  • Exploring the biosynthetic gene clusters in Brevibacterium: a comparative genomic analysis of diversity and distribution
    Andrés Cumsille, Néstor Serna-Cardona, Valentina González, Fernanda Claverías, Agustina Undabarrena, Vania Molina, Francisco Salvà-Serra, Edward R.B. Moore, Beatriz Cámara
    BMC Genomics.2023;[Epub]     CrossRef
  • Identification, characterization, and genome sequencing of Brevibacterium sediminis MG-1 isolate with growth-promoting properties
    Marat Tafkilevich Lutfullin, Guzel Fanisovna Lutfullina, Dasha Sergeevna Pudova, Yaw Abayie Akosah, Elena Ilyasovna Shagimardanova, Semyon Germanovich Vologin, Margarita Rashidovna Sharipova, Ayslu Mirkasymovna Mardanova
    3 Biotech.2022;[Epub]     CrossRef
  • Valid publication of new names and new combinations effectively published outside the IJSEM. Validation List no. 203
    Aharon Oren, George M. Garrity
    International Journal of Systematic and Evolutionary Microbiology .2022;[Epub]     CrossRef
Lentibacillus cibarius sp. nov., isolated from kimchi, a Korean fermented food
Young Joon Oh , Joon Yong Kim , Hee Eun Jo , Hyo Kyeong Park , Seul Ki Lim , Min-Sung Kwon , Hak-Jong Choi
J. Microbiol. 2020;58(5):387-394.   Published online April 11, 2020
DOI: https://doi.org/10.1007/s12275-020-9507-7
  • 53 View
  • 0 Download
  • 10 Web of Science
  • 11 Crossref
AbstractAbstract
Two bacterial strains designated NKC220-2T and NKC851-2 were isolated from commercial kimchi from different areas in Korea. The strains were Gram-positive, aerobic, oxidaseand catalase-positive, rod-shaped, spore-forming, non-motile, and halophilic bacteria. Both strains grew without NaCl, unlike type species in the genus Lentibacillus. The optimal pH for growth was 8.0, higher than that of the type species in the genus Lentibacillus, although growth was observed at pH 5.5–9.0. 16S rRNA gene sequence-based phylogenetic analysis indicated that the two strains (99.3–99.9% similarity) are grouped within the genus Lentibacillus and most closely related to Lentibacillus juripiscarius IS40-3T (97.4–97.6% similarity) isolated from fish sauce in Thailand. OrthoANI value between two novel strains and Lentibacillus lipolyticus SSKP1- 9T (79.5–79.6% similarity) was far lower than the species demarcation threshold. Comparative genomic analysis displayed differences between the two strains as well as among other strains belonging to Lentibacillus. Furthermore, each isolate had strain-specific groups of orthologous genes based on pangenome analysis. Genomic G + C contents of strains NKC- 220-2T and NKC851-2 were 41.9 and 42.2 mol%, respectively. The strains contained meso-diaminopimelic acid in their cell walls, and the major menaquinone was menaquinone-7. Phosphatidylglycerol, diphosphatidylglycerol, and an unidentified glycolipid, aminophospholipid, and phospholipid were the major polar lipid components of both strains. The major cellular fatty acids of the strains were anteiso-C15:0 and anteiso- C17:0. Based on phenotypic, genomic, phylogenetic, and chemotaxonomic features, strains NKC220-2T and NKC851-2 represent novel species of the genus Lentibacillus, for which the name Lentibacillus cibarius sp. nov. is proposed. The type strain is NKC220-2T (= KACC 21232T = JCM 33390T).

Citations

Citations to this article as recorded by  
  • Detection of the Microbial Composition of Some Commercial Fermented Liquid Products via Metagenomic Analysis
    Cansu Çelik Doğan, Hafize Tuğba Yüksel Dolgun, Serkan İkiz, Şükrü Kırkan, Uğur Parın
    Foods.2023; 12(19): 3538.     CrossRef
  • Lentibacillus daqui sp. nov., isolated from high-temperature Daqu, a starter for production of Chinese Jiang-flavour Baijiu
    Yuan Liang, Zhen-Ming Lu, Wei Shi, Lin-Huan Wu, Li-Juan Chai, Xiao-Juan Zhang, Su-Yi Zhang, Song-Tao Wang, Cai-Hong Shen, Zheng-Hong Xu
    International Journal of Systematic and Evolutionary Microbiology .2023;[Epub]     CrossRef
  • Occurrence of biogenic amines and their correlation with bacterial communities in the Ivorian traditional fermented fish adjuevan during the storage
    Marina Ghislaine Abré, Clémentine Amenan Kouakou-Kouamé, Florent Kouadio N’guessan, Corinne Teyssier, Didier Montet
    Folia Microbiologica.2023; 68(2): 257.     CrossRef
  • Description of Corynebacterium poyangense sp. nov., isolated from the feces of the greater white-fronted geese (Anser albifrons)
    Qian Liu, Guoying Fan, Kui Wu, Xiangning Bai, Xi Yang, Wentao Song, Shengen Chen, Yanwen Xiong, Haiying Chen
    Journal of Microbiology.2022; 60(7): 668.     CrossRef
  • Parasphingorhabdus cellanae sp. nov., isolated from the gut of a Korean limpet, Cellana toreuma
    Ji-Ho Yoo, Jeong Eun Han, June-Young Lee, Su-Won Jeong, Yun-Seok Jeong, Jae-Yun Lee, So-Yeon Lee, Hojun Sung, Euon Jung Tak, Hyun Sik Kim, Pil Soo Kim, Jee-Won Choi, Do-Yeon Kim, In Chul Jeong, Do-Hun Gim, Seo Min Kang, Jin-Woo Bae
    International Journal of Systematic and Evolutionary Microbiology .2022;[Epub]     CrossRef
  • Isolation and characterization of tick-borne Roseomonas haemaphysalidis sp. nov. and rodent-borne Roseomonas marmotae sp. nov.
    Wentao Zhu, Juan Zhou, Shan Lu, Jing Yang, Xin-He Lai, Dong Jin, Ji Pu, Yuyuan Huang, Liyun Liu, Zhenjun Li, Jianguo Xu
    Journal of Microbiology.2022; 60(2): 137.     CrossRef
  • The Methods of Digging for “Gold” within the Salt: Characterization of Halophilic Prokaryotes and Identification of Their Valuable Biological Products Using Sequencing and Genome Mining Tools
    Jakub Lach, Paulina Jęcz, Dominik Strapagiel, Agnieszka Matera-Witkiewicz, Paweł Stączek
    Genes.2021; 12(11): 1756.     CrossRef
  • Lentibacillus saliphilus. sp. nov., a moderately halophilic bacterium isolated from a saltern in Korea
    Yun Wang, Gang-Qiang Jiang, Hong-Ping Lin, Peng Sun, Hong-Yan Zhang, Dong-Mei Lu, Li-Yun Wang, Chang-Jin Kim, Shu-Kun Tang
    Archives of Microbiology.2021; 203(2): 621.     CrossRef
  • Salicibibacter cibarius sp. nov. and Salicibibacter cibi sp. nov., two novel species of the family Bacillaceae isolated from kimchi
    Young Joon Oh, Joon Yong Kim, Seul Ki Lim, Min-Sung Kwon, Hak-Jong Choi
    Journal of Microbiology.2021; 59(5): 460.     CrossRef
  • Flaviflexus ciconiae sp. nov., isolated from the faeces of the oriental stork, Ciconia boyciana
    Jae-Yun Lee, Woorim Kang, Pil Soo Kim, So-Yeon Lee, Na-Ri Shin, Hojun Sung, June-Young Lee, Ji-Hyun Yun, Yun-Seok Jeong, Jeong Eun Han, Mi-Ja Jung, Dong-Wook Hyun, Hyun Sik Kim, Euon Jung Tak, Jin-Woo Bae
    International Journal of Systematic and Evolutionary Microbiology.2020; 70(10): 5439.     CrossRef
  • List of new names and new combinations that have appeared in effective publications outside of the IJSEM and are submitted for valid publication
    Aharon Oren, George M. Garrity
    International Journal of Systematic and Evolutionary Microbiology .2019;[Epub]     CrossRef
H2 Metabolism revealed by metagenomic analysis of subglacial sediment from East Antarctica
Zhifeng Yang , Yu Zhang , Yongxin Lv , Wenkai Yan , Xiang Xiao , Bo Sun , Hongmei Ma
J. Microbiol. 2019;57(12):1095-1104.   Published online November 22, 2019
DOI: https://doi.org/10.1007/s12275-019-9366-2
  • 43 View
  • 0 Download
  • 11 Web of Science
  • 10 Crossref
AbstractAbstract
Subglacial ecosystems harbor diverse chemoautotrophic microbial communities in areas with limited organic carbon, and lithological H2 produced during glacial erosion has been considered an important energy source in these ecosystems. To verify the H2-utilizing potential there and to identify the related energy-converting metabolic mechanisms of these communities, we performed metagenomic analysis on subglacial sediment samples from East Antarctica with and without H2 supplementation. Genes coding for several [NiFe]- hydrogenases were identified in raw sediment and were enriched after H2 incubation. All genes in the dissimilatory nitrate reduction and denitrification pathways were detected in the subglacial community, and the genes coding for these pathways became enriched after H2 was supplied. Similarly, genes transcribing key enzymes in the Calvin cycle were detected in raw sediment and were also enriched. Moreover, key genes involved in H2 oxidization, nitrate reduction, oxidative phosphorylation, and the Calvin cycle were identified within one metagenome-assembled genome belonging to a Polaromonas sp. As suggested by our results, the microbial community in the subglacial environment we investigated consisted of chemoautotrophic populations supported by H2 oxidation. These results further confirm the importance of H2 in the cryosphere.

Citations

Citations to this article as recorded by  
  • Microbial genetic potential differs among cryospheric habitats of the Damma glacier
    Maomao Feng, Serina Robinson, Weihong Qi, Arwyn Edwards, Beat Stierli, Marcel van der Heijden, Beat Frey, Gilda Varliero
    Microbial Genomics .2024;[Epub]     CrossRef
  • Inorganic carbon metabolism enhanced hydrogen-driven denitrification: Evaluation of carbon fixation pathways and microbial traits
    Puchun Wang, Yang Wu, Lan Yang, Xiong Zheng, Min Long, Yinguang Chen
    Chemical Engineering Journal.2024; 497: 154528.     CrossRef
  • The response of C/N/S cycling functional microbial communities to redox conditions in shallow aquifers using in-situ sediment as bio-trap matrix
    Cui Li, Rong Chen, Weiwei Ouyang, Chen Xue, Minghui Liu, Hui Liu
    Environmental Technology.2024; 45(18): 3666.     CrossRef
  • Glacial Water: A Dynamic Microbial Medium
    Gilda Varliero, Pedro H. Lebre, Beat Frey, Andrew G. Fountain, Alexandre M. Anesio, Don A. Cowan
    Microorganisms.2023; 11(5): 1153.     CrossRef
  • Microbial Community Structure and Metabolic Potential at the Initial Stage of Soil Development of the Glacial Forefields in Svalbard
    Chen Tian, Yongxin Lv, Zhifeng Yang, Ruifeng Zhang, Zhuoyi Zhu, Hongmei Ma, Jing Li, Yu Zhang
    Microbial Ecology.2023; 86(2): 933.     CrossRef
  • Aerobic hydrogen-oxidizing bacteria in soil: from cells to ecosystems
    Xinyun Fan, Xuemeng Zhang, Guohua Zhao, Xin Zhang, Lei Dong, Yinguang Chen
    Reviews in Environmental Science and Bio/Technology.2022; 21(4): 877.     CrossRef
  • Prokaryotic community and diversity in coastal surface waters along the Western Antarctic Peninsula
    Rafet Cagri Ozturk, Ali Muzaffer Feyzioglu, Ilhan Altinok
    Polar Science.2022; 31: 100764.     CrossRef
  • Shotgun metagenomics reveals distinct functional diversity and metabolic capabilities between 12 000-year-old permafrost and active layers on Muot da Barba Peider (Swiss Alps)
    Carla Perez-Mon, Weihong Qi, Surendra Vikram, Aline Frossard, Thulani Makhalanyane, Don Cowan, Beat Frey
    Microbial Genomics .2021;[Epub]     CrossRef
  • Global modeling of hydrogen using GFDL-AM4.1: Sensitivity of soil removal and radiative forcing
    Fabien Paulot, David Paynter, Vaishali Naik, Sergey Malyshev, Raymond Menzel, Larry W. Horowitz
    International Journal of Hydrogen Energy.2021; 46(24): 13446.     CrossRef
  • Lithogenic hydrogen supports microbial primary production in subglacial and proglacial environments
    Eric C. Dunham, John E. Dore, Mark L. Skidmore, Eric E. Roden, Eric S. Boyd
    Proceedings of the National Academy of Sciences.2021;[Epub]     CrossRef
Review
[MINIREVIEW] Alanine dehydrogenases in mycobacteria
Ji-A Jeong , Jeong-Il Oh
J. Microbiol. 2019;57(2):81-92.   Published online January 31, 2019
DOI: https://doi.org/10.1007/s12275-019-8543-7
  • 46 View
  • 1 Download
  • 11 Web of Science
  • 11 Crossref
AbstractAbstract
Since NAD(H)-dependent L-alanine dehydrogenase (EC 1.1.4.1; Ald) was identified as one of the major antigens present in culture filtrates of Mycobacterium tuberculosis, many studies on the enzyme have been conducted. Ald catalyzes the reversible conversion of pyruvate to alanine with concomitant oxidation of NADH to NAD+ and has a homohexameric quaternary structure. Expression of the ald genes was observed to be strongly upregulated in M. tuberculosis and Mycobacterium smegmatis grown in the presence of alanine. Furthermore, expression of the ald genes in some mycobacteria was observed to increase under respiration-inhibitory conditions such as oxygen-limiting and nutrient-starvation conditions. Upregulation of ald expression by alanine or under respiration-inhibitory conditions is mediated by AldR, a member of the Lrp/AsnC family of transcriptional regulators. Mycobacterial Alds were demonstrated to be the enzymes required for utilization of alanine as a nitrogen source and to help mycobacteria survive under respiration-inhibitory conditions by maintaining cellular NADH/NAD+ homeostasis. Several inhibitors of Ald have been developed, and their application in combination with respiration-inhibitory antitubercular drugs such as Q203 and bedaquiline was recently suggested.

Citations

Citations to this article as recorded by  
  • Amino Acid Biosynthesis Inhibitors in Tuberculosis Drug Discovery
    Michela Guida, Chiara Tammaro, Miriana Quaranta, Benedetta Salvucci, Mariangela Biava, Giovanna Poce, Sara Consalvi
    Pharmaceutics.2024; 16(6): 725.     CrossRef
  • Alanine dehydrogenases from four different microorganisms: characterization and their application in L-alanine production
    Pengfei Gu, Qianqian Ma, Shuo Zhao, Qiang Li, Juan Gao
    Biotechnology for Biofuels and Bioproducts.2023;[Epub]     CrossRef
  • Application of reductive amination by heterologously expressed Thermomicrobium roseum L-alanine dehydrogenase to synthesize L-alanine derivatives
    Huri Dedeakayoğulları, Jarkko Valjakka, Ossi Turunen, Berin Yilmazer, Ğarip Demir, Janne Jänis, Barış Binay
    Enzyme and Microbial Technology.2023; 169: 110265.     CrossRef
  • A review on enzyme complexes of electron transport chain from Mycobacterium tuberculosis as promising drug targets
    Pragya Anand, Yusuf Akhter
    International Journal of Biological Macromolecules.2022; 212: 474.     CrossRef
  • Alanine synthesized by alanine dehydrogenase enables ammonium-tolerant nitrogen fixation in Paenibacillus sabinae T27
    Qin Li, Haowei Zhang, Yi Song, Minyang Wang, Chongchong Hua, Yashi Li, Sanfeng Chen, Ray Dixon, Jilun Li
    Proceedings of the National Academy of Sciences.2022;[Epub]     CrossRef
  • Antibacterial Activity of Squaric Amide Derivative SA2 against Methicillin-Resistant Staphylococcus aureus
    Moxi Yu, Yachen Hou, Meiling Cheng, Yongshen Liu, Caise Ling, Dongshen Zhai, Hui Zhao, Yaoyao Li, Yamiao Chen, Xiaoyan Xue, Xue Ma, Min Jia, Bin Wang, Pingan Wang, Mingkai Li
    Antibiotics.2022; 11(11): 1497.     CrossRef
  • Mining for Perchlorate Resistance Genes in Microorganisms From Sediments of a Hypersaline Pond in Atacama Desert, Chile
    Jorge Díaz-Rullo, Gustavo Rodríguez-Valdecantos, Felipe Torres-Rojas, Luis Cid, Ignacio T. Vargas, Bernardo González, José Eduardo González-Pastor
    Frontiers in Microbiology.2021;[Epub]     CrossRef
  • Targeting amino acid metabolism of Mycobacterium tuberculosis for developing inhibitors to curtail its survival
    Soujanya D. Yelamanchi, Avadhesha Surolia
    IUBMB Life.2021; 73(4): 643.     CrossRef
  • Targeting Non-Replicating Mycobacterium tuberculosis and Latent Infection: Alternatives and Perspectives (Mini-Review)
    Anna Egorova, Elena G. Salina, Vadim Makarov
    International Journal of Molecular Sciences.2021; 22(24): 13317.     CrossRef
  • Distinctive gene and protein characteristics of extremely piezophilic Colwellia
    Logan M. Peoples, Than S. Kyaw, Juan A. Ugalde, Kelli K. Mullane, Roger A. Chastain, A. Aristides Yayanos, Masataka Kusube, Barbara A. Methé, Douglas H. Bartlett
    BMC Genomics.2020;[Epub]     CrossRef
  • Comparison of Extracellular Proteins from Virulent and Avirulent Vibrio parahaemolyticus Strains to Identify Potential Virulence Factors
    Yu He, Shuai Wang, Xianting Yin, Fengjiao Sun, Bin He, Xiao Liu
    Journal of Food Protection.2020; 83(1): 155.     CrossRef
Journal Articles
Hydrogen sulfide inhibits the growth of Escherichia coli through oxidative damage
Liu-Hui Fu , Zeng-Zheng Wei , Kang-Di Hu , Lan-Ying Hu , Yan-Hong Li , Xiao-Yan Chen , Zhuo Han , Gai-Fang Yao , Hua Zhang
J. Microbiol. 2018;56(4):238-245.   Published online February 28, 2018
DOI: https://doi.org/10.1007/s12275-018-7537-1
  • 48 View
  • 0 Download
  • 60 Crossref
AbstractAbstract
Many studies have shown that hydrogen sulfide (H2S) is both detrimental and beneficial to animals and plants, whereas its effect on bacteria is not fully understood. Here, we report that H2S, released by sodium hydrosulfide (NaHS), significantly inhibits the growth of Escherichia coli in a dose-dependent manner. Further studies have shown that H2S treatment stimulates the production of reactive oxygen species (ROS) and decreases glutathione (GSH) levels in E. coli, resulting in lipid peroxidation and DNA damage. H2S also inhibits the antioxidative enzyme activities of superoxide dismutase (SOD), catalase (CAT) and glutathione reductase (GR) and induces the response of the SoxRS and OxyR regulons in E. coli. Moreover, pretreatment with the antioxidant ascorbic acid (AsA) could effectively prevent H2S-induced toxicity in E. coli. Taken together, our results indicate that H2S exhibits an antibacterial effect on E. coli through oxidative damage and suggest a possible application for H2S in water and food processing.

Citations

Citations to this article as recorded by  
  • Resensitization of Multi Drug-Resistant Aeromonas caviae with Exogenous Hydrogen Sulfide Potentiated Antibiotics
    Sahithya Selvakumar, Shubhi Singh, Priya Swaminathan
    Current Microbiology.2025;[Epub]     CrossRef
  • Metagenomics and metatranscriptomics insights into microbial enhancement of H2S removal and CO2 assimilation
    Junjie Wang, Zhuowei Cheng, Yunfei Su, Jiade Wang, Dongzhi Chen, Jianmeng Chen, Xiaoming Wu, Aobo Chen, Zhenyu Gu
    Journal of Environmental Management.2025; 373: 123714.     CrossRef
  • Deep-sea in situ and laboratory multi-omics provide insights into the sulfur assimilation of a deep-sea Chloroflexota bacterium
    Rikuan Zheng, Chong Wang, Chaomin Sun, Christa M. Schleper
    mBio.2024;[Epub]     CrossRef
  • Detection and evaluation of susceptibility to antibiotics in non-hydrogen sulfide-producing antibiotic-resistant soil microbe: Pseudomonas guariconensis
    Sahithya Selvakumar, Shubhi Singh, Priya Swaminathan
    International Microbiology.2024;[Epub]     CrossRef
  • Nanomaterials‐Induced Redox Imbalance: Challenged and Opportunities for Nanomaterials in Cancer Therapy
    Xumeng Wu, Ziqi Zhou, Kai Li, Shaoqin Liu
    Advanced Science.2024;[Epub]     CrossRef
  • pH-Responsive nanoplatform synergistic gas/photothermal therapy to eliminate biofilms in poly(l-lactic acid) scaffolds
    Guowen Qian, Yuqian Mao, Huihui Zhao, Lemin Zhang, Long Xiong, Zhisheng Long
    Journal of Materials Chemistry B.2024; 12(5): 1379.     CrossRef
  • Enhancing cancer treatment via “Zn2+ interference” with Zn-based nanomaterials
    Yandong Wang, Fucheng Gao, Li Zhao, Yanqiu Wu, Can Li, Hui Li, Yanyan Jiang
    Coordination Chemistry Reviews.2024; 500: 215535.     CrossRef
  • Effect of H2S and cysteine homeostasis disturbance on ciprofloxacin sensitivity of Escherichia coli in cystine-free and cystine-fed minimal medium
    Galina Smirnova, Aleksey Tyulenev, Lyubov Sutormina, Tatyana Kalashnikova, Zoya Samoilova, Nadezda Muzyka, Vadim Ushakov, Oleg Oktyabrsky
    Archives of Microbiology.2024;[Epub]     CrossRef
  • Identification of the organic peroxide scavenging system of Yersinia pseudotuberculosis and its regulation by OxyR
    Junfeng Fan, Xiaofen Mo, Hui Zhang, Linna Xu, Jianhua Yin, Fen Wan, Nicole R. Buan
    Applied and Environmental Microbiology.2024;[Epub]     CrossRef
  • Microenvironment Responsive Biomineralization Nanofirework Employing H2S-Assisted Photothermal Therapy to Prompt Bacterial Wound Healing
    Xianan Li, Hairui Deng, Lingfeng Pan, Ziyue Xu, Mengcheng Tang, Zhimin He, Yachen Xu, Hao Fu, Ruibo Zhao, Shibo Wang, Xiangdong Kong
    ACS Applied Nano Materials.2024; 7(17): 20678.     CrossRef
  • H2S scavenger as a broad-spectrum strategy to deplete bacteria-derived H2S for antibacterial sensitization
    Jiekai Sun, Xu Wang, Ye Gao, Shuangyu Li, Ziwei Hu, Yan Huang, Baoqiang Fan, Xia Wang, Miao Liu, Chunhua Qiao, Wei Zhang, Yipeng Wang, Xingyue Ji
    Nature Communications.2024;[Epub]     CrossRef
  • Fabricating a PDA-NOate@CuS coated NIR-activatable titanium implant to realize simultaneous antiinfection and osseointegration
    Jiahuan Liu, Xiaowan Li, Shangyu Xie, Ruirui Ma, Hongfei Wang, Shurong Ban, Chengwu Zhang, Lixia Guo
    New Journal of Chemistry.2024; 48(25): 11465.     CrossRef
  • Unraveling the potential of hydrogen sulfide as a signaling molecule for plant development and environmental stress responses: A state-of-the-art review
    Siloni Singh Bhadwal, Shagun Verma, Shahnawaz Hassan, Satwinderjeet Kaur
    Plant Physiology and Biochemistry.2024; 212: 108730.     CrossRef
  • Gas Therapy: Generating, Delivery, and Biomedical Applications
    Pejman Ghaffari‐Bohlouli, Hafez Jafari, Oseweuba Valentine Okoro, Houman Alimoradi, Lei Nie, Guohua Jiang, Ashok Kakkar, Amin Shavandi
    Small Methods.2024;[Epub]     CrossRef
  • Methylosinus trichosporium OB3b drives composition-independent application of biogas in poly(3-hydroxybutyrate) synthesis
    Sunho Park, Shinhyeong Choe, Hyejeong Lee, Jaewook Myung
    Fuel.2024; 378: 132730.     CrossRef
  • Ahp deficiency-induced redox imbalance leads to metabolic alterations in E. coli
    Feng Liu, Penggang Han, Nuomin Li, Yongqian Zhang
    Redox Biology.2023; 67: 102888.     CrossRef
  • Effect of sulfamethazine on the horizontal transfer of plasmid-mediated antibiotic resistance genes and its mechanism of action
    Xiaojing Yan, Wenwen Liu, Shengfang Wen, Lanjun Wang, Lusheng Zhu, Jun Wang, Young Mo Kim, Jinhua Wang
    Journal of Environmental Sciences.2023; 127: 399.     CrossRef
  • D-cysteine desulfhydrase DCD1 participates in tomato resistance against Botrytis cinerea by modulating ROS homeostasis
    Yuqi Zhao, Kangdi Hu, Gaifang Yao, Siyue Wang, Xiangjun Peng, Conghe Zhang, Dexin Zeng, Kai Zong, Yaning Lyu, Hua Zhang
    Vegetable Research.2023;[Epub]     CrossRef
  • Bacteria‐Targeted Combined with Photothermal/NO Nanoparticles for the Treatment and Diagnosis of MRSA Infection In Vivo
    Kai Lv, Guowei Li, Xiangjun Pan, Luxuan Liu, Ziheng Chen, Yu Zhang, Hao Xu, Dong Ma
    Advanced Healthcare Materials.2023;[Epub]     CrossRef
  • Antibiotic Resistance: Challenges and Strategies in Combating Infections
    Jay Chavada, Komal N Muneshwar, Yash Ghulaxe, Mohit Wani, Prayas P Sarda, Shreyash Huse
    Cureus.2023;[Epub]     CrossRef
  • Enhancement of bio-S0 recovery and revealing the inhibitory effect on microorganisms under high sulfide loading
    Junjie Wang, Zhuowei Cheng, Jiade Wang, Dongzhi Chen, Jianmeng Chen, Jianming Yu, Songkai Qiu, Dionysios D. Dionysiou
    Environmental Research.2023; 238: 117214.     CrossRef
  • Enzyme‐Triggered Chemodynamic Therapy via a Peptide‐H2S Donor Conjugate with Complexed Fe2+
    Yumeng Zhu, William R. Archer, Katlyn F. Morales, Michael D. Schulz, Yin Wang, John B. Matson
    Angewandte Chemie.2023;[Epub]     CrossRef
  • Antibacterial gas therapy: Strategies, advances, and prospects
    Tian-Yu Wang, Xiao-Yu Zhu, Fu-Gen Wu
    Bioactive Materials.2023; 23: 129.     CrossRef
  • Reactive oxygen species-upregulating nanomedicines towards enhanced cancer therapy
    Yuanyuan Ding, Qingqing Pan, Wenxia Gao, Yuji Pu, Kui Luo, Bin He
    Biomaterials Science.2023; 11(4): 1182.     CrossRef
  • Chameleon-like Anammox Bacteria for Surface Color Change after Suffering Starvation
    Jingqi Sun, Yiming Feng, Ru Zheng, Lingrui Kong, Xiaogang Wu, Kuo Zhang, Jianhang Zhou, Sitong Liu
    Environmental Science & Technology.2023; 57(40): 15087.     CrossRef
  • The Triple Crown: NO, CO, and H2S in cancer cell biology
    Palak P. Oza, Khosrow Kashfi
    Pharmacology & Therapeutics.2023; 249: 108502.     CrossRef
  • Stability and biomineralization of cadmium sulfide nanoparticles biosynthesized by the bacterium Rhodopseudomonas palustris under light
    Su-Fang Xing, Hui-Fang Tian, Zhen Yan, Chao Song, Shu-Guang Wang
    Journal of Hazardous Materials.2023; 458: 131937.     CrossRef
  • Intelligent polymeric hydrogen sulfide delivery systems for therapeutic applications
    Fan Rong, Tengjiao Wang, Qian Zhou, Haowei Peng, Jingtian Yang, Quli Fan, Peng Li
    Bioactive Materials.2023; 19: 198.     CrossRef
  • Nanoplatform-based cellular reactive oxygen species regulation for enhanced oncotherapy and tumor resistance alleviation
    Meifang Wang, Ping'an Ma, Jun Lin
    Chinese Chemical Letters.2023; 34(9): 108300.     CrossRef
  • In situ formation of ferrous sulfide in glycyrrhizic acid hydrogels to promote healing of multi-drug resistant Staphylococcus aureus-infected diabetic wounds
    Zhuobin Xu, Ze Xu, Jiake Gu, Juan Zhou, Gengyu Sha, Ying Huang, Tong Wang, Lei Fan, Yanfeng Zhang, Juqun Xi
    Journal of Colloid and Interface Science.2023; 650: 1918.     CrossRef
  • The Conditions Matter: The Toxicity of Titanium Trisulfide Nanoribbons to Bacteria E. coli Changes Dramatically Depending on the Chemical Environment and the Storage Time
    Olga V. Zakharova, Valeria V. Belova, Peter A. Baranchikov, Anna A. Kostyakova, Dmitry S. Muratov, Gregory V. Grigoriev, Svetlana P. Chebotaryova, Denis V. Kuznetsov, Alexander A. Gusev
    International Journal of Molecular Sciences.2023; 24(9): 8299.     CrossRef
  • Community ecological study on the reduction of soil antimony bioavailability by SRB-based remediation technologies
    Min Zhang, Jing Xiong, Lei Zhou, Jingjing Li, Jianqiang Fan, Xing Li, Teng Zhang, Zhuzhong Yin, Huaqun Yin, Xueduan Liu, Delong Meng
    Journal of Hazardous Materials.2023; 459: 132256.     CrossRef
  • Enzyme‐Triggered Chemodynamic Therapy via a Peptide‐H2S Donor Conjugate with Complexed Fe2+
    Yumeng Zhu, William R. Archer, Katlyn F. Morales, Michael D. Schulz, Yin Wang, John B. Matson
    Angewandte Chemie International Edition.2023;[Epub]     CrossRef
  • Enhancement of dissimilatory nitrate/nitrite reduction to ammonium of Escherichia coli sp. SZQ1 by ascorbic acid: Mechanism and performance
    Zhiqiang Su, Yu Zhang, Ruizhi Zhao, Jiti Zhou
    Science of The Total Environment.2022; 853: 158423.     CrossRef
  • Mitochondria-targeting Type I AIE photosensitizer combined with H2S therapy: Uninterrupted hydroxyl radical generation for enhancing tumor therapy
    Tianfu Zhang, Zeming Liu, Wenxue Tang, Daoming Zhu, Meng Lyu, Jacky Wing Yip Lam, Qinqin Huang, Ben Zhong Tang
    Nano Today.2022; 46: 101620.     CrossRef
  • Generation and Physiology of Hydrogen Sulfide and Reactive Sulfur Species in Bacteria
    Sirui Han, Yingxi Li, Haichun Gao
    Antioxidants.2022; 11(12): 2487.     CrossRef
  • Metal sulfide precipitation mediated by an elemental sulfur-reducing thermoacidophilic microbial culture from a full-scale anaerobic reactor
    Adrian Hidalgo-Ulloa, Cees Buisman, Jan Weijma
    Hydrometallurgy.2022; 213: 105950.     CrossRef
  • Oxidative stress response system in Escherichia coli arising from diphenyl ditelluride (PhTe)2 exposure
    F.C. Pinheiro, V.C. Bortolotto, S.M. Araujo, S.F. Couto, M.M.M. Dahleh, M. Cancela, J. Neto, G. Zeni, A. Zaha, M. Prigol
    Toxicology in Vitro.2022; 83: 105404.     CrossRef
  • On-demand therapeutic delivery of hydrogen sulfide aided by biomolecules
    Yuxuan Ge, Fan Rong, Wei Li, Yin Wang
    Journal of Controlled Release.2022; 352: 586.     CrossRef
  • Antibiotic resistance: The challenges and some emerging strategies for tackling a global menace
    David Chinemerem Nwobodo, Malachy Chigozie Ugwu, Clement Oliseloke Anie, Mushtak T. S. Al‐Ouqaili, Joseph Chinedu Ikem, Uchenna Victor Chigozie, Morteza Saki
    Journal of Clinical Laboratory Analysis.2022;[Epub]     CrossRef
  • Vitamin C Maintenance against Cell Growth Arrest and Reactive Oxygen Species Accumulation in the Presence of Redox Molecular Chaperone hslO Gene
    Akihiro Kaidow, Noriko Ishii, Shingo Suzuki, Takashi Shiina, Hirokazu Kasahara
    International Journal of Molecular Sciences.2022; 23(21): 12786.     CrossRef
  • Cysteine Biosynthesis in Campylobacter jejuni: Substrate Specificity of CysM and the Dualism of Sulfide
    Noah Hitchcock, David J. Kelly, Andrew Hitchcock, Aidan J. Taylor
    Biomolecules.2022; 13(1): 86.     CrossRef
  • Transcriptomic analysis of chloride tolerance in Leptospirillum ferriphilum DSM 14647 adapted to NaCl
    Javier Rivera-Araya, Thomas Heine, Renato Chávez, Michael Schlömann, Gloria Levicán, Benjamin J. Koestler
    PLOS ONE.2022; 17(4): e0267316.     CrossRef
  • Acute stress of the typical disinfectant glutaraldehyde-didecyldimethylammonium bromide (GD) on sludge microecology in livestock wastewater treatment plants: Effect and its mechanisms
    Yuxin Li, Jiayin Ling, Jinghao Xue, Junwei Huang, Xiao Zhou, Fei Wang, Waner Hou, Jianbin Zhao, Yanbin Xu
    Water Research.2022; 227: 119342.     CrossRef
  • Sulfide Treatment Alters Antioxidant Response and Related Genes Expressions in Rice Field Eel (Monopterus albus)
    Liqiao Zhong, Fan Yao, He Zhang, Huaxiao Xie, Huijun Ru, Nian Wei, Zhaohui Ni, Zhong Li, Yunfeng Li
    Water.2022; 14(20): 3230.     CrossRef
  • Development of Polycaprolactone–Zeolite Nanoporous Composite Films for Topical Therapeutic Release of Different Gasotransmitters
    Rosana V. Pinto, Sílvia Carvalho, Fernando Antunes, João Pires, Moisés L. Pinto
    ACS Applied Nano Materials.2022; 5(7): 9230.     CrossRef
  • Near-infrared laser-controlled nitric oxide-releasing gold nanostar/hollow polydopamine Janus nanoparticles for synergistic elimination of methicillin-resistant Staphylococcus aureus and wound healing
    Zhuoying Liang, Wenkang Liu, Ziqiang Wang, Peilian Zheng, Wei Liu, Jianfu Zhao, Yunlong Zhong, Yan Zhang, Jing Lin, Wei Xue, Siming Yu
    Acta Biomaterialia.2022; 143: 428.     CrossRef
  • Cysteine supplementation enhanced inhibitor tolerance of Zymomonas mobilis for economic lignocellulosic bioethanol production
    Xiongying Yan, Xia Wang, Yongfu Yang, Zhen Wang, Haoyu Zhang, Yang Li, Qiaoning He, Mian Li, Shihui Yang
    Bioresource Technology.2022; 349: 126878.     CrossRef
  • Natural inactivation of MS2, poliovirus type 1 and Cryptosporidium parvum in an anaerobic and reduced aquifer
    John T. Lisle, George Lukasik
    Journal of Applied Microbiology.2022; 132(3): 2464.     CrossRef
  • Hydrogen sulfide in longevity and pathologies: Inconsistency is malodorous
    Alexander S. Sokolov, Pavel V. Nekrasov, Mikhail V. Shaposhnikov, Alexey A. Moskalev
    Ageing Research Reviews.2021; 67: 101262.     CrossRef
  • Hydrogen Sulfide and Carbon Monoxide Tolerance in Bacteria
    Sofia S. Mendes, Vanessa Miranda, Lígia M. Saraiva
    Antioxidants.2021; 10(5): 729.     CrossRef
  • CBS-derived H2S facilitates host colonization of Vibrio cholerae by promoting the iron-dependent catalase activity of KatB
    Yao Ma, Xiaoman Yang, Hongou Wang, Zixin Qin, Chunrong Yi, Changping Shi, Mei Luo, Guozhong Chen, Jin Yan, Xiaoyun Liu, Zhi Liu, William Navarre
    PLOS Pathogens.2021; 17(7): e1009763.     CrossRef
  • Hydrogen sulfide (H2S) signaling in plant development and stress responses
    Hai Liu, Jicheng Wang, Jianhao Liu, Tong Liu, Shaowu Xue
    aBIOTECH.2021; 2(1): 32.     CrossRef
  • Hydrogen sulfide: An endogenous regulator of the immune system
    Nahzli Dilek, Andreas Papapetropoulos, Tracy Toliver-Kinsky, Csaba Szabo
    Pharmacological Research.2020; 161: 105119.     CrossRef
  • Protective Role of Bacterial Alkanesulfonate Monooxygenase under Oxidative Stress
    Chulwoo Park, Bora Shin, Woojun Park, Maia Kivisaar
    Applied and Environmental Microbiology.2020;[Epub]     CrossRef
  • Hydrogen Sulfide Sensitizes Acinetobacter baumannii to Killing by Antibiotics
    Say Yong Ng, Kai Xun Ong, Smitha Thamarath Surendran, Ameya Sinha, Joey Jia Hui Lai, Jacqueline Chen, Jiaqi Liang, Leona Kwan Sing Tay, Liang Cui, Hooi Linn Loo, Peiying Ho, Jongyoon Han, Wilfried Moreira
    Frontiers in Microbiology.2020;[Epub]     CrossRef
  • FeS@BSA Nanoclusters to Enable H2S‐Amplified ROS‐Based Therapy with MRI Guidance
    Congkun Xie, Dong Cen, Zhaohui Ren, Yifan Wang, Yongjun Wu, Xiang Li, Gaorong Han, Xiujun Cai
    Advanced Science.2020;[Epub]     CrossRef
  • Hydrogen sulfide and environmental stresses
    John T. Hancock
    Environmental and Experimental Botany.2019; 161: 50.     CrossRef
  • The H2S Donor GYY4137 Stimulates Reactive Oxygen Species Generation in BV2 Cells While Suppressing the Secretion of TNF and Nitric Oxide
    Milica Lazarević, Emanuela Mazzon, Miljana Momčilović, Maria Sofia Basile, Giuseppe Colletti, Maria Cristina Petralia, Placido Bramanti, Ferdinando Nicoletti, Đorđe Miljković
    Molecules.2018; 23(11): 2966.     CrossRef
  • Do nitric oxide, carbon monoxide and hydrogen sulfide really qualify as ‘gasotransmitters’ in bacteria?
    Lauren K. Wareham, Hannah M. Southam, Robert K. Poole
    Biochemical Society Transactions.2018; 46(5): 1107.     CrossRef
The crystal structure of methanol dehydrogenase, a quinoprotein from the marine methylotrophic bacterium Methylophaga aminisulfidivorans MPT
Thinh-Phat Cao , Jin Myung Choi , Si Wouk Kim , Sung Haeng Lee
J. Microbiol. 2018;56(4):246-254.   Published online February 28, 2018
DOI: https://doi.org/10.1007/s12275-018-7483-y
  • 43 View
  • 0 Download
  • 13 Crossref
AbstractAbstract
The first crystal structure of a pyrroloquinoline quinone (PQQ)-dependent methanol dehydrogenase (MDH) from a marine methylotrophic bacterium, Methylophaga aminisulfidivorans MPT (MDHMas), was determined at 1.7 Å resolution. The active form of MDHMas (or MDHIMas) is a heterotetrameric α2β2, where each β-subunit assembles on one side of each of the α-subunits, in a symmetrical fashion, so that two β-subunits surround the two PQQ-binding pockets on the α-subunits. The active site consists of a PQQ molecule surrounded by a β-propeller fold for each α-subunit. Interestingly, the PQQ molecules are coordinated by a Mg2+ ion, instead of the Ca2+ ion that is commonly found in the terrestrial MDHI, indicating the efficiency of osmotic balance regulation in the high salt environment. The overall interaction of the β-subunits with the α-subunits appears tighter than that of terrestrial homologues, suggesting the efficient maintenance of MDHIMas integrity in the sea water environment to provide a firm basis for complex formation with MxaJMas or Cyt cL. With the help of the features mentioned above, our research may enable the elucidation of the full molecular mechanism of methanol oxidation by taking advantage of marine bacterium-originated proteins in the methanol oxidizing system (mox), including MxaJ, as the attainment of these proteins from terrestrial bacteria for structural studies has not been successful.

Citations

Citations to this article as recorded by  
  • Computational insights into the molecular dynamics of the binding of ligands in the methanol dehydrogenase
    One-Sun Lee, Sung Haeng Lee
    Chemistry Letters.2024;[Epub]     CrossRef
  • Formaldehyde: An Essential Intermediate for C1 Metabolism and Bioconversion
    Mengshi Jia, Mengge Liu, Jiawen Li, Wankui Jiang, Fengxue Xin, Wenming Zhang, Yujia Jiang, Min Jiang
    ACS Synthetic Biology.2024; 13(11): 3507.     CrossRef
  • Unveiling the Secrets of Calcium-Dependent Proteins in Plant Growth-Promoting Rhizobacteria: An Abundance of Discoveries Awaits
    Betina Cecilia Agaras, Cecilia Eugenia María Grossi, Rita María Ulloa
    Plants.2023; 12(19): 3398.     CrossRef
  • The biochemistry of lanthanide acquisition, trafficking, and utilization
    Emily R. Featherston, Joseph A. Cotruvo
    Biochimica et Biophysica Acta (BBA) - Molecular Cell Research.2021; 1868(1): 118864.     CrossRef
  • Bioinorganic insights of the PQQ-dependent alcohol dehydrogenases
    Pedro D. Sarmiento-Pavía, Martha E. Sosa-Torres
    JBIC Journal of Biological Inorganic Chemistry.2021; 26(2-3): 177.     CrossRef
  • Bioinformatic analysis of subfamily-specific regions in 3D-structures of homologs to study functional diversity and conformational plasticity in protein superfamilies
    Daria Timonina, Yana Sharapova, Vytas Švedas, Dmitry Suplatov
    Computational and Structural Biotechnology Journal.2021; 19: 1302.     CrossRef
  • Methanol Dehydrogenases as a Key Biocatalysts for Synthetic Methylotrophy
    Thien-Kim Le, Yu-Jin Lee, Gui Hwan Han, Soo-Jin Yeom
    Frontiers in Bioengineering and Biotechnology.2021;[Epub]     CrossRef
  • Lanthanide-dependent alcohol dehydrogenases require an essential aspartate residue for metal coordination and enzymatic function
    Nathan M. Good, Matthias Fellner, Kemal Demirer, Jian Hu, Robert P. Hausinger, N. Cecilia Martinez-Gomez
    Journal of Biological Chemistry.2020; 295(24): 8272.     CrossRef
  • Zebra2: advanced and easy-to-use web-server for bioinformatic analysis of subfamily-specific and conserved positions in diverse protein superfamilies
    Dmitry Suplatov, Yana Sharapova, Elizaveta Geraseva, Vytas Švedas
    Nucleic Acids Research.2020; 48(W1): W65.     CrossRef
  • Biological Pincer Complexes
    Jorge L. Nevarez, Aiko Turmo, Jian Hu, Robert P. Hausinger
    ChemCatChem.2020; 12(17): 4242.     CrossRef
  • Crystal structure of Cytochrome cL from the aquatic methylotrophic bacterium Methylophaga aminisulfidivorans MPT
    Suparna Ghosh, Immanuel Dhanasingh, Jaewon Ryu, Si Wouk Kim, Sung Haeng Lee
    Journal of Microbiology and Biotechnology.2020; 30(8): 1261.     CrossRef
  • New metal cofactors and recent metallocofactor insights
    Robert P Hausinger
    Current Opinion in Structural Biology.2019; 59: 1.     CrossRef
  • Lanthanides‐based catalysis in eukaryotes
    Giovanna De Simone, Fabio Polticelli, Silvio Aime, Paolo Ascenzi
    IUBMB Life.2018; 70(11): 1067.     CrossRef
The inability of Bacillus licheniformis perR mutant to grow is mainly due to the lack of PerR-mediated fur repression
Jung-Hoon Kim , Yoon-Mo Yang , Chang-Jun Ji , Su-Hyun Ryu , Young-Bin Won , Shin-Yeong Ju , Yumi Kwon , Yeh-Eun Lee , Hwan Youn , Jin-Won Lee
J. Microbiol. 2017;55(6):457-463.   Published online April 22, 2017
DOI: https://doi.org/10.1007/s12275-017-7051-x
  • 55 View
  • 0 Download
  • 5 Crossref
AbstractAbstract
PerR, a member of Fur family protein, is a metal-dependent H2O2 sensing transcription factor that regulates genes in-volved in peroxide stress response. Industrially important bac-terium Bacillus licheniformis contains three PerR-like pro-teins (PerRBL, PerR2, and PerR3) compared to its close rela-tive Bacillus subtilis. Interestingly, unlike other bacteria in-cluding B. subtilis, no authentic perRBL null mutant could be established for B. licheniformis. Thus, we constructed a con-ditional perRBL mutant using a xylose-inducible promoter, and investigated the genes under the control of PerRBL. PerRBL regulon genes include katA, mrgA, ahpC, pfeT, hemA, fur, and perR as observed for PerRBS. However, there is some variation in the expression levels of fur and hemA genes be-tween B. subtilis and B. licheniformis in the derepressed state. Furthermore, katA, mrgA, and ahpC are strongly induced, whereas the others are only weakly or not induced by H2O2 treatment. In contrast to the B. subtilis perR null mutant which frequently gives rise to large colony phenotype mainly due to the loss of katA, the suppressors of B. licheniformis perR mutant, which can form colonies on LB agar, were all cata-lase-positive. Instead, many of the suppressors showed in-creased levels of siderophore production, suggesting that the suppressor mutation is linked to the fur gene. Consistent with this, perR fur double mutant could grow on LB agar without Fe supplementation, whereas perR katA double mutant could only grow on LB agar with Fe supplementation. Taken toge-ther, our data suggest that in B. licheniformis, despite the si-milarity in PerRBL and PerRBS regulon genes, perR is an essen-tial gene required for growth and that the inability of perR null mutant to grow is mainly due to elevated expression of Fur.

Citations

Citations to this article as recorded by  
  • Characterization of the dual regulation by a c-di-GMP riboswitch Bc1 with a long expression platform from Bacillus thuringiensis
    Lu Liu, Dehua Luo, Yongji Zhang, Dingqi Liu, Kang Yin, Qing Tang, Shan-Ho Chou, Jin He, Beile Gao
    Microbiology Spectrum.2024;[Epub]     CrossRef
  • Meddling with Metal Sensors: Fur-Family Proteins as Signaling Hubs
    Caroline H. Steingard, John D. Helmann, Tina M. Henkin
    Journal of Bacteriology.2023;[Epub]     CrossRef
  • Divergent Effects of Peptidoglycan Carboxypeptidase DacA on Intrinsic β-Lactam and Vancomycin Resistance
    Si Hyoung Park, Umji Choi, Su-Hyun Ryu, Han Byeol Lee, Jin-Won Lee, Chang-Ro Lee, Krisztina M. Papp-Wallace
    Microbiology Spectrum.2022;[Epub]     CrossRef
  • Microbial Redox Regulator-Enabled Pulldown for Rapid Analysis of Plasma Low-Molecular-Weight Biothiols
    Jin Oh Lee, Yoon-Mo Yang, Jae-Hoon Choi, Tae-Wuk Kim, Jin-Won Lee, Young-Pil Kim
    Analytical Chemistry.2019; 91(15): 10064.     CrossRef
  • Redox Sensing by Fe2+in Bacterial Fur Family Metalloregulators
    Azul Pinochet-Barros, John D. Helmann
    Antioxidants & Redox Signaling.2018; 29(18): 1858.     CrossRef
Functional characterization of the cutI gene for the transcription of carbon monoxide dehydrogenase genes in Mycobacterium sp. strain JC1 DSM 3803
Jae Ho Lee , Sae Woong Park , Young Min Kim , Jeong-Il Oh
J. Microbiol. 2017;55(1):31-36.   Published online December 30, 2016
DOI: https://doi.org/10.1007/s12275-017-6572-7
  • 42 View
  • 0 Download
  • 2 Crossref
AbstractAbstract
Carbon monoxide dehydrogenase (CO-DH) in Mycobacterium sp. strain JC1 is a key enzyme for the carboxydotrophic growth, when carbon monoxide (CO) is supplied as a sole source of carbon and energy. This enzyme is also known to act as nitric oxide dehydrogenase (NO-DH) for the detoxification of NO. Several accessory genes such as cutD, cutE, cutF, cutG, cutH, and cutI, are clustered together with two copies of the CO-DH structural genes (cutB1C1A1 and cutB2C2A2) in Mycobacterium sp. strain JC1 and are well conserved in carboxydotrophic mycobacteria. Transcription of the CO-DH structural and accessory genes was demonstrated to be increased significantly by acidified sodium nitrate as a source of NO. A cutI deletion (ΔcutI) mutant of Mycobacterium sp. strain JC1 was generated to identity the function of CutI. Lithoautotrophic growth of the ΔcutI mutant was severely affected in mineral medium supplemented with CO, while the mutant grew normally with glucose. Western blotting, CO-DH activity staining, and CO-DH-specific enzyme assay revealed a significant decrease in the cellular level of CO-DH in the ΔcutI mutant. Northern blot analysis and promoter assay showed that expression of the cutB1 and cutB2 genes was significantly reduced at the transcriptional level in the ΔcutI mutant, compared to that of the wildtype strain. The ΔcutI mutant was much more susceptible to NO than was the wild type.

Citations

Citations to this article as recorded by  
  • Characterization of a MHYT domain-coupled transcriptional regulator that responds to carbon monoxide
    Gonzalo Durante-Rodríguez, Sofía de Francisco-Polanco, José Luis García, Eduardo Díaz
    Nucleic Acids Research.2024; 52(15): 8849.     CrossRef
  • Molybdenum Enzymes and How They Support Virulence in Pathogenic Bacteria
    Qifeng Zhong, Bostjan Kobe, Ulrike Kappler
    Frontiers in Microbiology.2020;[Epub]     CrossRef
Identification of D-amino acid dehydrogenase as an upstream regulator of the autoinduction of a putative acyltransferase in Corynebacterium glutamicum
Jung-Hoon Lee , Yong-Jae Kim , Hee-Sung Shin , Heung-Shick Lee , Shouguang Jin , Un-Hwan Ha
J. Microbiol. 2016;54(6):432-439.   Published online May 27, 2016
DOI: https://doi.org/10.1007/s12275-016-6046-3
  • 47 View
  • 0 Download
  • 1 Crossref
AbstractAbstract
Expression of a putative acyltransferase encoded by NCgl- 0350 of Corynebacterium glutamicum is induced by cell-free culture fluids obtained from stationary-phase growth of both C. glutamicum and Pseudomonas aeruginosa, providing evidence for interspecies communication. Here, we further confirmed that such communication occurs by showing that acyltransferase expression is induced by culture fluid obtained from diverse Gram-negative and -positive bacterial strains, including Escherichia coli, Salmonella Typhimurium, Bacillus subtilis, Staphylococcus aureus, Mycobacterium sp. strain JC1, and Mycobacterium smegmatis. A homologous acyltransferase encoded by PA5238 of P. aeruginosa was also induced by fluids obtained from P. aeruginosa as well as other bacterial strains, as observed for NCgl0350 of C. glutamicum. Because C. glutamicum is difficult to study using molecular approaches, the homologous gene PA5238 of P. aeruginosa was used to identify PA5309 as an upstream regulator of expression. A homologous D-amino acid dehydrogenase encoded by NCgl- 2909 of C. glutamicum was cloned based on amino acid similarity to PA5309, and its role in the regulation of NCgl0350 expression was confirmed. Moreover, NCgl2909 played positive roles in growth of C. glutamicum. Thus, we identified a D-amino acid dehydrogenase as an upstream regulator of the autoinduction of a putative acyltransferase in C. glutamicum.

Citations

Citations to this article as recorded by  
  • Enhanced Bacterial Growth and Gene Expression of D-Amino Acid Dehydrogenase With D-Glutamate as the Sole Carbon Source
    Takeshi Naganuma, Yoshiakira Iinuma, Hitomi Nishiwaki, Ryota Murase, Kazuo Masaki, Ryosuke Nakai
    Frontiers in Microbiology.2018;[Epub]     CrossRef

Journal of Microbiology : Journal of Microbiology
TOP