Search
- Page Path
-
HOME
> Search
Journal Article
- Molecular characterization of Hsf1 as a master regulator of heat shock response in the thermotolerant methylotrophic yeast Ogataea parapolymorpha
-
Jin Ho Choo , Su-Bin Lee , Hye Yun Moon , Kun Hwa Lee , Su Jin Yoo , Keun Pil Kim , Hyun Ah Kang
-
J. Microbiol. 2021;59(2):151-163. Published online February 1, 2021
-
DOI: https://doi.org/10.1007/s12275-021-0646-2
-
-
8
View
-
0
Download
-
3
Citations
-
Abstract
- Ogataea parapolymorpha (Hansenula polymorpha DL-1) is
a thermotolerant methylotrophic yeast with biotechnological
applications. Here, O. parapolymorpha genes whose expression
is induced in response to heat shock were identified by
transcriptome analysis and shown to possess heat shock elements
(HSEs) in their promoters. The function of O. parapolymorpha
HSF1 encoding a putative heat shock transcription
factor 1 (OpHsf1) was characterized in the context of heat
stress response. Despite exhibiting low sequence identity
(26%) to its Saccharomyces cerevisiae homolog, OpHsf1 harbors
conserved domains including a DNA binding domain
(DBD), domains involved in trimerization (TRI), transcriptional
activation (AR1, AR2), transcriptional repression (CE2),
and a C-terminal modulator (CTM) domain. OpHSF1 could
complement the temperature sensitive (Ts) phenotype of a
S. cerevisiae hsf1 mutant. An O. parapolymorpha strain with
an H221R mutation in the DBD domain of OpHsf1 exhibited
significantly retarded growth and a Ts phenotype. Intriguingly,
the expression of heat-shock-protein‒coding genes harboring
HSEs was significantly decreased in the H221R mutant
strain, even under non-stress conditions, indicating the importance
of the DBD for the basal growth of O. parapolymorpha.
Notably, even though the deletion of C-terminal domains
(ΔCE2, ΔAR2, ΔCTM) of OpHsf1 destroyed complementation
of the growth defect of the S. cerevisiae hsf1 strain,
the C-terminal domains were shown to be dispensable in O.
parapolymorpha. Overexpression of OpHsf1 in S. cerevisiae
increased resistance to transient heat shock, supporting the
idea that OpHsf1 could be useful in the development of heatshock‒
resistant yeast host strains.
TOP