Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
1 "hydroxylation"
Filter
Filter
Article category
Keywords
Publication year
Review
MINIREVIEW] Hydroxylation of methane through component interactions in soluble methane monooxygenases
Seung Jae Lee
J. Microbiol. 2016;54(4):277-282.   Published online April 1, 2016
DOI: https://doi.org/10.1007/s12275-016-5642-6
  • 48 View
  • 0 Download
  • 7 Crossref
AbstractAbstract
Methane hydroxylation through methane monooxygenases (MMOs) is a key aspect due to their control of the carbon cycle in the ecology system and recent applications of methane gas in the field of bioenergy and bioremediation. Methanotropic bacteria perform a specific microbial conversion from methane, one of the most stable carbon compounds, to methanol through elaborate mechanisms. MMOs express particulate methane monooxygenase (pMMO) in most strains and soluble methane monooxygenase (sMMO) under copper-limited conditions. The mechanisms of MMO have been widely studied from sMMO belonging to the bacterial multicomponent monooxygenase (BMM) superfamily. This enzyme has diiron active sites where different types of hydrocarbons are oxidized through orchestrated hydroxylase, regulatory and reductase components for precise control of hydrocarbons, oxygen, protons, and electrons. Recent advances in biophysical studies, including structural and enzymatic achievements for sMMO, have explained component interactions, substrate pathways, and intermediates of sMMO. In this account, oxidation of methane in sMMO is discussed with recent progress that is critical for understanding the microbial applications of C-H activation in one-carbon substrates.

Citations

Citations to this article as recorded by  
  • Complete genome sequences of Methylococcus capsulatus (Norfolk) and Methylocaldum szegediense (Norfolk) isolated from a landfill methane biofilter
    David Pearce, Elliot Brooks, Charles Wright, Daniel Rankin, Andrew T. Crombie, J. Colin Murrell, Elinne Becket
    Microbiology Resource Announcements.2024;[Epub]     CrossRef
  • Effect of monodentate heterocycle co-ligands on the μ-1,2-peroxo-diiron(III) mediated aldehyde deformylation reactions
    Patrik Török, Dóra Lakk-Bogáth, Duenpen Unjaroen, Wesley R. Browne, József Kaizer
    Journal of Inorganic Biochemistry.2024; 258: 112620.     CrossRef
  • Crucial Role of the Chaperonin GroES/EL for Heterologous Production of the Soluble Methane Monooxygenase from Methylomonas methanica MC09
    Domenic Zill, Elisabeth Lettau, Christian Lorent, Franziska Seifert, Praveen K. Singh, Lars Lauterbach
    ChemBioChem.2022;[Epub]     CrossRef
  • Bioinspired Oxidation of Methane: From Academic Models of Methane Monooxygenases to Direct Conversion of Methane to Methanol
    A. A. Shteinman
    Kinetics and Catalysis.2020; 61(3): 339.     CrossRef
  • Effect of the Nuclearity and Coordination of Cu and Fe Sites in β Zeolites on the Oxidation of Hydrocarbons
    Petr Sazama, Jaroslava Moravkova, Stepan Sklenak, Alena Vondrova, Edyta Tabor, Galina Sadovska, Radim Pilar
    ACS Catalysis.2020; 10(7): 3984.     CrossRef
  • Enrichment culture and identification of endophytic methanotrophs isolated from peatland plants
    Zofia Stępniewska, Weronika Goraj, Agnieszka Kuźniar, Natalia Łopacka, Magdalena Małysza
    Folia Microbiologica.2017; 62(5): 381.     CrossRef
  • A growing family of O2 activating dinuclear iron enzymes with key catalytic diiron(III)-peroxo intermediates: Biological systems and chemical models
    Alexandre Trehoux, Jean-Pierre Mahy, Frédéric Avenier
    Coordination Chemistry Reviews.2016; 322: 142.     CrossRef

Journal of Microbiology : Journal of Microbiology
TOP