Search
- Page Path
-
HOME
> Search
Journal Articles
- Characterization of staphylococcal endolysin LysSAP33 possessing untypical domain composition
-
Jun-Hyeok Yu , Do-Won Park , Jeong-A Lim , Jong-Hyun Park
-
J. Microbiol. 2021;59(9):840-847. Published online August 12, 2021
-
DOI: https://doi.org/10.1007/s12275-021-1242-1
-
-
16
View
-
0
Download
-
3
Citations
-
Abstract
- Endolysin, a peptidoglycan hydrolase derived from bacteriophage,
has been suggested as an alternative antimicrobial
agent. Many endolysins on staphylococcal phages have been
identified and applied extensively against Staphylococcus spp.
Among them, LysK-like endolysin, a well-studied staphylococcal
endolysin, accounts for most of the identified endolysins.
However, relatively little interest has been paid to LysKunlike
endolysin and a few of them has been characterized.
An endolysin LysSAP33 encoded on bacteriophage SAP33
shared low homology with LysK-like endolysin in sequence
by 41% and domain composition (CHAP-unknown CBD).
A green fluorescence assay using a fusion protein for Lys-
SAP33_CBD indicated that the CBD domain (157-251 aa)
was bound to the peptidoglycan of S. aureus. The deletion of
LysSAP33_CBD at the C-terminal region resulted in a significant
decrease in lytic activity and efficacy. Compared to
LysK-like endolysin, LysSAP33 retained its lytic activity in a
broader range of temperature, pH, and NaCl concentrations.
In addition, it showed a higher activity against biofilms than
LysK-like endolysin. This study could be a helpful tool to develop
our understanding of staphylococcal endolysins not
belonging to LysK-like endolysins and a potential biocontrol
agent against biofilms.
- The effects of deletion of cellobiohydrolase genes on carbon source-dependent growth and enzymatic lignocellulose hydrolysis in Trichoderma reesei
-
Meibin Ren , Yifan Wang , Guoxin Liu , Bin Zuo , Yuancheng Zhang , Yunhe Wang , Weifeng Liu , Xiangmei Liu , Yaohua Zhong
-
J. Microbiol. 2020;58(8):687-695. Published online June 10, 2020
-
DOI: https://doi.org/10.1007/s12275-020-9630-5
-
-
19
View
-
0
Download
-
7
Citations
-
Abstract
- The saprophytic fungus Trichoderma reesei has long been used
as a model to study microbial degradation of lignocellulosic
biomass. The major cellulolytic enzymes of T. reesei are the
cellobiohydrolases CBH1 and CBH2, which constitute more
than 70% of total proteins secreted by the fungus. However,
their physiological functions and effects on enzymatic hydrolysis
of cellulose substrates are not sufficiently elucidated.
Here, the cellobiohydrolase-encoding genes cbh1 and cbh2
were deleted, individually or combinatively, by using an auxotrophic
marker-recycling technique in T. reesei. When cultured
on media with different soluble carbon sources, all three
deletion strains (Δcbh1, Δcbh2, and Δcbh1Δcbh2) exhibited
no dramatic variation in morphological phenotypes, but their
growth rates increased apparently when cultured on soluble
cellulase-inducing carbon sources. In addition, Δcbh1 showed
dramatically reduced growth and Δcbh1Δcbh2 could hardly
grew on microcrystalline cellulose (MCC), whereas all strains
grew equally on sodium carboxymethyl cellulose (CMC-Na),
suggesting that the influence of the CBHs on growth was carbon
source-dependent. Moreover, five representative cellulose
substrates were used to analyse the influence of the absence
of CBHs on saccharification efficiency. CBH1 deficiency
significantly affected the enzymatic hydrolysis rates of various
cellulose substrates, where acid pre-treated corn stover
(PCS) was influenced the least. CBH2 deficiency reduced the
hydrolysis of MCC, PCS, and acid pre-treated and delignified
corncob but improved the hydrolysis ability of filter paper.
These results demonstrate the specific contributions of
CBHs to the hydrolysis of different types of biomass, which
could facilitate the development of tailor-made strains with
highly efficient hydrolysis enzymes for certain biomass types
in the biofuel industry.
- WasC, a WASP family protein, is involved in cell adhesion and migration through regulation of F-actin polymerization in Dictyostelium
-
Pyeonghwa Jeon , Taeck Joong Jeon
-
J. Microbiol. 2020;58(8):696-702. Published online June 10, 2020
-
DOI: https://doi.org/10.1007/s12275-020-0138-9
-
-
14
View
-
0
Download
-
5
Citations
-
Abstract
- The actin cytoskeleton is involved in the regulation of cell
morphology and migration. Wiskott-Aldrich Syndrome proteins
(WASPs) play an important role in controlling actin
polymerization by activating the Arp2/3 complex. The present
study investigated the roles of WasC, one of the 3 WASPs
in Dictyostelium, in cellular processes. Cells lacking WasC
displayed strong cell adhesion and approximately 1.5-fold
increase in F-actin levels as compared to the wild-type cells.
Loss of wasC caused defects in phagocytosis and decreased
the migration speed in chemoattractant-mediated cell migration
but did not affect directionality. WasC was localized to the
protruding region in migrating cells and, transiently and rapidly
translocated to the cell cortex in response to chemoattractant
stimulation, in an F-actin dependent manner. Our
results
suggest that WasC is involved in cell adhesion and
migration by regulating F-actin polymerization at the leading
edge of migrating cells, probably as a negative regulator.
The increased strength of adhesion in wasC null cells is likely
to decrease the migration speed but not the directionality.
TOP