Search
- Page Path
-
HOME
> Search
Review
- Structural Insights into the Lipopolysaccharide Transport (Lpt) System as a Novel Antibiotic Target.
-
Yurim Yoon, Saemee Song
-
J. Microbiol. 2024;62(4):261-275. Published online May 31, 2024
-
DOI: https://doi.org/10.1007/s12275-024-00137-w
-
-
Abstract
- Lipopolysaccharide (LPS) is a critical component of the extracellular leaflet within the bacterial outer membrane, forming an effective physical barrier against environmental threats in Gram-negative bacteria. After LPS is synthesized and matured in the bacterial cytoplasm and the inner membrane (IM), LPS is inserted into the outer membrane (OM) through the ATP-driven LPS transport (Lpt) pathway, which is an energy-intensive process. A trans-envelope complex that contains seven Lpt proteins (LptA-LptG) is crucial for extracting LPS from the IM and transporting it across the periplasm to the OM. The last step in LPS transport involves the mediation of the LptDE complex, facilitating the insertion of LPS into the outer leaflet of the OM. As the Lpt system plays an essential role in maintaining the impermeability of the OM via LPS decoration, the interactions between these interconnected subunits, which are meticulously regulated, may be potential targets for the development of new antibiotics to combat multidrug-resistant Gram-negative bacteria. In this review, we aimed to provide an overview of current research concerning the structural interactions within the Lpt system and their implications to clarify the function and regulation of LPS transport in the overall process of OM biogenesis.
Additionally, we explored studies on the development of therapeutic inhibitors of LPS transport, the factors that limit success, and future prospects.
Journal Articles
- [Protocol] Use of Cas9 Targeting and Red Recombination for Designer Phage Engineering
-
Shin-Yae Choi , Danitza Xiomara Romero-Calle , Han-Gyu Cho , Hee-Won Bae , You-Hee Cho
-
J. Microbiol. 2024;62(1):1-10. Published online February 1, 2024
-
DOI: https://doi.org/10.1007/s12275-024-00107-2
-
-
Abstract
- Bacteriophages (phages) are natural antibiotics and biological nanoparticles, whose application is significantly boosted by
recent advances of synthetic biology tools. Designer phages are synthetic phages created by genome engineering in a way
to increase the benefits or decrease the drawbacks of natural phages. Here we report the development of a straightforward
genome engineering method to efficiently obtain engineered phages in a model bacterial pathogen, Pseudomonas aeruginosa.
This was achieved by eliminating the wild type phages based on the Streptococcus pyogenes Cas9 (SpCas9) and facilitating
the recombinant generation based on the Red recombination system of the coliphage λ (λRed). The producer (PD) cells of
P. aeruginosa strain PAO1 was created by miniTn7-based chromosomal integration of the genes for SpCas9 and λRed under
an inducible promoter. To validate the efficiency of the recombinant generation, we created the fluorescent phages from a
temperate phage MP29. A plasmid bearing the single guide RNA (sgRNA) gene for selectively targeting the wild type gp35
gene and the editing template for tagging the Gp35 with superfolder green fluorescent protein (sfGFP) was introduced into
the PD cells by electroporation. We found that the targeting efficiency was affected by the position and number of sgRNA.
The fluorescent phage particles were efficiently recovered from the culture of the PD cells expressing dual sgRNA molecules.
This protocol can be used to create designer phages in P. aeruginosa for both application and research purposes.
- Alpha‑Hemolysin from Staphylococcus aureus Obstructs Yeast‑Hyphae Switching and Diminishes Pathogenicity in Candida albicans
-
Xiaoyu Yu , Yinhe Mao , Guangbo Li , Xianwei Wu , Qiankun Xuan , Simin Yang , Xiaoqing Chen , Qi Cao , Jian Guo , Jinhu Guo , Wenjuan Wu
-
J. Microbiol. 2023;61(2):233-243. Published online February 9, 2023
-
DOI: https://doi.org/10.1007/s12275-022-00006-4
-
-
22
View
-
0
Download
-
2
Citations
-
Abstract
- The use of antibiotics can disrupt the body’s natural balance and increase the susteptibility of patients towards fungal infections.
Candida albicans is a dimorphic opportunistic fungal pathogen with niches similar to those of bacteria. Our aim was
to study the interaction between this pathogen and bacteria to facilitate the control of C. albicans infection. Alpha-hemolysin
(Hla), a protein secreted from Staphylococcus aureus, causes cell wall damage and impedes the yeast–hyphae transition in
C. albicans. Mechanistically, Hla stimulation triggered the formation of reactive oxygen species that damaged the cell wall
and mitochondria of C. albicans. The cell cycle was arrested in the G0/G1 phase, CDC42 was downregulated, and Ywp1
was upregulated, disrupting yeast hyphae switching. Subsequently, hyphae development was inhibited. In mouse models,
C. albicans pretreated with Hla reduced the C. albicans burden in skin and vaginal mucosal infections, suggesting that S.
aureus Hla can inhibit hyphal development and reduce the pathogenicity of candidiasis in vivo.
TOP