Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
2 "live attenuation vaccine"
Filter
Filter
Article category
Keywords
Publication year
Journal Articles
Lactobacillus acidophilus KBL409 Ameliorates Atopic Dermatitis in a Mouse Model
Woon-ki Kim , You Jin Jang , SungJun Park , Sung-gyu Min , Heeun Kwon , Min Jung Jo , GwangPyo Ko
J. Microbiol. 2024;62(2):91-99.   Published online February 22, 2024
DOI: https://doi.org/10.1007/s12275-024-00104-5
  • 24 View
  • 1 Download
  • 1 Citations
AbstractAbstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease with repeated exacerbations of eczema and pruritus. Probiotics can prevent or treat AD appropriately via modulation of immune responses and gut microbiota. In this study, we evaluated effects of Lactobacillus acidophilus (L. acidophilus) KBL409 using a house dust mite (Dermatophagoides farinae)-induced in vivo AD model. Oral administration of L. acidophilus KBL409 significantly reduced dermatitis scores and decreased infiltration of immune cells in skin tissues. L. acidophilus KBL409 reduced in serum immunoglobulin E and mRNA levels of T helper (Th)1 (Interferon-γ), Th2 (Interleukin [IL]-4, IL-5, IL-13, and IL-31), and Th17 (IL-17A) cytokines in skin tissues. The anti-inflammatory cytokine IL-10 was increased and Foxp3 expression was up-regulated in AD-induced mice with L. acidophilus KBL409. Furthermore, L. acidophilus KBL409 significantly modulated gut microbiota and concentrations of short-chain fatty acids and amino acids, which could explain its effects on AD. Our results suggest that L. acidophilus KBL409 is the potential probiotic for AD treatment by modulating of immune responses and gut microbiota of host.
Effective mucosal live attenuated Salmonella vaccine by deleting phosphotransferase system component genes ptsI and crr
Yong Zhi , Shun Mei Lin , A-Yeung Jang , Ki Bum Ahn , Hyun Jung Ji , Hui-Chen Guo , Sangyong Lim , Ho Seong Seo
J. Microbiol. 2019;57(1):64-73.   Published online October 2, 2018
DOI: https://doi.org/10.1007/s12275-019-8416-0
  • 11 View
  • 0 Download
  • 13 Citations
AbstractAbstract
Salmonella enterica is a major human pathogen that causes invasive non-typhoidal Salmonellosis (iNTS), resulting in significant morbidity and mortality. Although a number of pre-clinical and clinical studies have reported on the feasibility of developing a safe and effective vaccine against iNTS, there have been no licensed Salmonella vaccines available to protect against NTS strains. Vaccine formulations of highest priority for NTS are live attenuated vaccines, which can elicit effective induction of intestinal mucosal and intracellular bacteria-specific cell mediated immune responses. Since glucose is crucial for intracellular survival and replication in host cells, we constructed strains with mutations in components of the glucose uptake system, called the phosphotransferase system (PTS), and compared the relative virulence and immune responses in mice. In this study, we found that the strain with mutations in both ptsI and crr (KST0556) was the most attenuated strain among the tested strains, and proved to be highly effective in inducing a mucosal immune response that can protect against NTS infections in mice. Thus, we suggest here that KST0556 (ΔptsIΔcrr) is a potential live vaccine candidate for NTS, and may also be a candidate for a live delivery vector for heterologous antigens. Moreover, since PTS is a well-conserved glucose transporter system in both Gramnegative and Gram-positive bacteria, the ptsI and crr genes may be potential targets for creating live bacterial vectors or vaccine strains.

Journal of Microbiology : Journal of Microbiology
TOP