Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
2 "melatonin"
Filter
Filter
Article category
Keywords
Publication year
Journal Articles
Brachybacterium kimchii sp. nov. and Brachybacterium halotolerans subsp. kimchii subsp. nov., isolated from the Korean fermented vegetables, kimchi, and description of Brachybacterium halotolerans subsp. halotolerans subsp. nov.
Yujin Kim , Yeon Bee Kim , Juseok Kim , Joon Yong Kim , Tae Woong Whon , Won-Hyong Chung , Eun-Ji Song , Young-Do Nam , Se Hee Lee , Seong Woon Roh
J. Microbiol. 2022;60(7):678-688.   Published online July 4, 2022
DOI: https://doi.org/10.1007/s12275-022-1581-6
  • 53 View
  • 0 Download
  • 2 Web of Science
  • 3 Crossref
AbstractAbstract
Two Gram-stain-positive, oxidase-negative, catalase-positive, and coccus-shaped bacterial strains, designated CBA3104T and CBA3105T, were isolated from kimchi. Strain CBA3104T and CBA3105T grew at 10–35°C (optimum, 25°C and 30°C, respectively), at pH 6.0–8.5 (optimum, pH 6.5), and in the presence of 0–15% (w/v) NaCl (optimum, 5%). A phylogenetic analysis based on 16S rRNA gene sequences revealed that strain CBA3104T formed a distinct phylogenetic lineage within the genus Brachybacterium whereas strain CBA3105T was closely positioned with Brachybacterium halotolerans MASK1Z-5T. The 16S rRNA gene sequence similarity between strains CBA3104T and CBA3105T was 99.9%, but ANI and dDDH values between strains CBA3104T and CBA3105T were 93.61% and 51.5%, respectively. Strain CBA3104T showed lower ANI and dDDH values than species delineation against three closely related strains and type species of the genus Brachybacterium, however, strain CBA3105T showed 96.63% ANI value and 69.6% dDDH value with Brachybacterium halotolerans MASK1Z-5T. Among biochemical analysis results, strain CBA3104T could uniquely utilize bromo-succinic acid whereas only strain CBA3105T was positive for alkaline phosphatase and α-fucosidase among two novel strains, closely related strains, and type species of the genus Brachybacterium. Compared with strain CBA3105T and Brachybacterium halotolerans JCM 34339T, strain CBA3105T was differentially positive for acid production of D-arabinose, D-adonitol, and potassium 5-ketogluconate and enzyme activity of β-glucuronidase. Both strains contained menaquinone-7 as the dominant quinone. The cell-wall peptidoglycan of two novel strains contained meso-diaminopimelic acid. The major fatty acids of strains CBA3104T and CBA3105T were anteiso-C15:0, anteiso-C17:0, and iso-C16:0. The major polar lipids of both strains were phosphatidylglycerol and diphosphatidylglycerol. Strain CBA3104T possessed a uniquely higher abundance of tRNA (97 tRNAs) than four Brachybacterium strains used for comparative taxonomic analysis (54–62 tRNAs). Both the CBA3104T and CBA3105T strain harbored various oxidoreductase, transferase, hydrolase, and lyase as strain-specific functional genes compared to closely related strains and Brachybacterium type species. The results of biochemical/physiological, chemotaxonomic, and genomic analyses demonstrated that strains CBA3104T and CBA3105T represent a novel species of the genus Brachybacterium and a novel subspecies of B. halotolerans, respectively, for which the names Brachybacterium kimchii sp. nov. and B. halotolerans subsp. kimchii subsp. nov. are proposed. The type strains of the novel species and the novel subspecies are CBA3104T (= KCCM 43417T = JCM 34759T) and CBA3105T (= KCCM 43418T = JCM 34760T), respectively.

Citations

Citations to this article as recorded by  
  • Metagenomic Insights into the Taxonomic and Functional Features of Traditional Fermented Milk Products from Russia
    Alexander G. Elcheninov, Kseniya S. Zayulina, Alexandra A. Klyukina, Mariia K. Kremneva, Ilya V. Kublanov, Tatiana V. Kochetkova
    Microorganisms.2023; 12(1): 16.     CrossRef
  • Validation List no. 208. Valid publication of new names and new combinations effectively published outside the IJSEM
    Aharon Oren, George M. Garrity
    International Journal of Systematic and Evolutionary Microbiology .2022;[Epub]     CrossRef
  • Complete Genome Sequence of Brachybacterium sp. Strain NBEC-018, Isolated from Nematode-Infected Potatoes
    Ling Chen, Yueying Wang, Nanxi Liu, Lei Zhu, Yong Min, Yimin Qiu, Yuxi Tian, Xiaoyan Liu, David Rasko
    Microbiology Resource Announcements.2022;[Epub]     CrossRef
The human symbiont Bacteroides thetaiotaomicron promotes diet-induced obesity by regulating host lipid metabolism
Sang-Hyun Cho , Yong-Joon Cho , Joo-Hong Park
J. Microbiol. 2022;60(1):118-127.   Published online December 29, 2021
DOI: https://doi.org/10.1007/s12275-022-1614-1
  • 132 View
  • 0 Download
  • 16 Web of Science
  • 15 Crossref
AbstractAbstract
The gut microbiome plays an important role in lipid metabolism. Consumption of a high-fat diet (HFD) alters the bacterial communities in the gut, leading to metabolic disorders. Several bacterial species have been associated with diet-induced obesity, nonalcoholic fatty liver disease, and metabolic syndrome. However, the mechanisms underlying the control of lipid metabolism by symbiotic bacteria remain elusive. Here, we show that the human symbiont Bacteroides thetaiotaomicron aggravates metabolic disorders by promoting lipid digestion and absorption. Administration of B. thetaiotaomicron to HFD-fed mice promoted weight gain, elevated fasting glucose levels, and impaired glucose tolerance. Furthermore, B. thetaiotaomicron treatment upregulated the gene expression of the fatty acid transporter and increased fatty acid accumulation in the liver. B. thetaiotaomicron inhibits expression of the gene encoding a lipoprotein lipase inhibitor, angiopoietin-like protein 4 (ANGPTL4), thereby increasing lipase activity in the small intestine. In particular, we found that B. thetaiotaomicron induced the expression of hepcidin, the master regulator of iron metabolism and an antimicrobial peptide, in the liver. Hepcidin treatment resulted in a decrease in ANGPTL4 expression in Caco-2 cells, whereas treatment with an iron chelator restored ANGPTL4 expression in hepcidin- treated cells. These results indicate that B. thetaiotaomicron- mediated regulation of iron storage in intestinal epithelial cells may contribute to increased fat deposition and impaired glucose tolerance in HFD-fed mice.

Citations

Citations to this article as recorded by  
  • Integrating transcriptomics and Microbiomics to unravel the regulatory effects of Anji white tea on lipid metabolism in HFD-induced obese mice
    Zhenyu Wang, Yifang Zhang, Xiaolei Shi, Xiaojun Li, Shangxiong Qi, Chunli Hu, Jin Zhao
    Food Research International.2025; 206: 116101.     CrossRef
  • Effects of dietary lipid and protein levels on metamorphosis, growth, metabolism and gut microbiota of tadpole (Lithobates catesbeianus)
    Bo Zhu, Lei Zhong, Chuang Shao, Wenjie Xu, Shuhui Xiang, Shuiquan Fu, Yi Hu
    Aquaculture.2024; 587: 740900.     CrossRef
  • Beneficial metabolic effects of PAHSAs depend on the gut microbiota in diet-induced obese mice but not in chow-fed mice
    Jennifer Lee, Kerry Wellenstein, Ali Rahnavard, Andrew T. Nelson, Marlena M. Holter, Bethany P. Cummings, Vladimir Yeliseyev, Angela Castoldi, Clary B. Clish, Lynn Bry, Dionicio Siegel, Barbara B. Kahn
    Proceedings of the National Academy of Sciences.2024;[Epub]     CrossRef
  • Anti-obesity activity of human gut microbiota Bacteroides stercoris KGMB02265
    Seoung Woo Ryu, Jeong Chan Moon, Byeong Seob Oh, Seung Yeob Yu, Jeong Eun Bak, Eun Seo Heo, Jae-Ho Jeong, Ju Huck Lee
    Archives of Microbiology.2024;[Epub]     CrossRef
  • Bacteroides thetaiotaomicron ameliorates mouse hepatic steatosis through regulating gut microbial composition, gut-liver folate and unsaturated fatty acids metabolism
    Hu Li, Xue-Kai Wang, Mei Tang, Lei Lei, Jian-Rui Li, Han Sun, Jing Jiang, Biao Dong, Hong-Ying Li, Jian-Dong Jiang, Zong-Gen Peng
    Gut Microbes.2024;[Epub]     CrossRef
  • Gut microbiota and metabolic modulation by supplementation of polysaccharide-producing Bacillus licheniformis from Tibetan Yaks: A comprehensive multi-omics analysis
    Zhibo Zeng, Chuxian Quan, Shimeng Zhou, Saisai Gong, Mudassar Iqbal, Muhammad Fakhar-e-Alam Kulyar, Shah Nawaz, Kewei Li, Jiakui Li
    International Journal of Biological Macromolecules.2024; 254: 127808.     CrossRef
  • Insights from metagenomics into gut microbiome associated with acute coronary syndrome therapy
    Yuee Guan, Shuru Zhao, Jing Li, Wenqian Zhang, Zhonghao Guo, Yi Luo, Xiaofei Jiang, Jun Li, Jianxiong Liu, Xi Chen, Zicheng Zhao, Zhe Zhang
    Frontiers in Microbiology.2024;[Epub]     CrossRef
  • Whole genome sequencing of mouse lines divergently selected for fatness (FLI) and leanness (FHI) revealed several genetic variants as candidates for novel obesity genes
    Martin Šimon, Špela Mikec, Santosh S. Atanur, Janez Konc, Nicholas M. Morton, Simon Horvat, Tanja Kunej
    Genes & Genomics.2024; 46(5): 557.     CrossRef
  • Extract of Gardenia jasminoides Ellis Attenuates High-Fat Diet-Induced Glycolipid Metabolism Disorder in Rats by Targeting Gut Microbiota and TLR4/Myd88/NF-κB Pathway
    Chenghao Lv, Xin Liu, Shiyun Chen, Yuhang Yi, Xinnian Wen, Tao Li, Si Qin
    Antioxidants.2024; 13(3): 293.     CrossRef
  • A microbial causal mediation analytic tool for health disparity and applications in body mass index
    Chan Wang, Jiyoung Ahn, Thaddeus Tarpey, Stella S. Yi, Richard B. Hayes, Huilin Li
    Microbiome.2023;[Epub]     CrossRef
  • Differences in dietary patterns related to metabolic health by gut microbial enterotypes of Korean adults
    Hwan-Hee Jang, Hwayoung Noh, Gichang Kim, Su-Yeon Cho, Hyeon-Jeong Kim, Jeong-Sook Choe, Jeongseon Kim, Augustin Scalbert, Marc J. Gunter, Oran Kwon, Hyesook Kim
    Frontiers in Nutrition.2023;[Epub]     CrossRef
  • Impact of diet and host genetics on the murine intestinal mycobiome
    Yask Gupta, Anna Lara Ernst, Artem Vorobyev, Foteini Beltsiou, Detlef Zillikens, Katja Bieber, Simone Sanna-Cherchi, Angela M. Christiano, Christian D. Sadik, Ralf J. Ludwig, Tanya Sezin
    Nature Communications.2023;[Epub]     CrossRef
  • Effects of OsomeFood Clean Label plant-based meals on the gut microbiome
    Dwiyanto Jacky, Chia Bibi, Look Melvin Chee Meng, Fong Jason, Tan Gwendoline, Lim Jeremy, Chong Chun Wie
    BMC Microbiology.2023;[Epub]     CrossRef
  • Consumption of Antioxidant-Rich “Cerrado” Cashew Pseudofruit Affects Hepatic Gene Expression in Obese C57BL/6J High Fat-Fed Mice
    Mariana Buranelo Egea, Gavin Pierce, Si-Hong Park, Sang-In Lee, Fabienne Heger, Neil Shay
    Foods.2022; 11(17): 2543.     CrossRef
  • Host—microbial interactions in metabolic diseases: from diet to immunity
    Ju-Hyung Lee, Joo-Hong Park
    Journal of Microbiology.2022; 60(6): 561.     CrossRef

Journal of Microbiology : Journal of Microbiology
TOP