Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
1 "membrane disruption"
Filter
Filter
Article category
Keywords
Publication year
Journal Article
Antimicrobial effect and proposed action mechanism of cordycepin against Escherichia coli and Bacillus subtilis
Qi Jiang , Zaixiang Lou , Hongxin Wang , Chen Chen
J. Microbiol. 2019;57(4):288-297.   Published online March 30, 2019
DOI: https://doi.org/10.1007/s12275-019-8113-z
  • 53 View
  • 0 Download
  • 38 Web of Science
  • 39 Crossref
AbstractAbstract
The detailed antibacterial mechanism of cordycepin efficacy against food-borne germs remains ambiguous. In this study, the antibacterial activity and action mechanism of cordycepin were assessed. The results showed that cordycepin effectively inhibited the growth of seven bacterial pathogens including both Gram-positive and Gram-negative bacterial pathogens; the minimum inhibitory concentrations (MIC) were 2.5 and 1.25 mg/ml against Escherichia coli and Bacillus subtilis, respectively. Scanning electron microscope and transmission electron microscope examination confirmed that cordycepin caused obvious damages in the cytoplasmatic membranes of both E. coli and B. subtilis. Outer membrane permeability assessment indicated the loss of barrier function and the leakage of cytoplasmic contents. Propidium iodide and carboxyfluorescein diacetate double staining approach coupled with flow cytometry analysis indicated that the integrity of cell membrane was severely damaged during a short time, while the intracellular enzyme system still remained active. This clearly suggested that membrane damage was one of the reasons for cordycepin efficacy against bacteria. Additionally, results from circular dichroism and fluorescence analysis indicated cordycepin could insert to genome DNA base and double strand, which disordered the structure of genomic DNA. Basis on these results, the mode of bactericidal action of cordycepin against E. coli and B. subtilis was found to be a dual mechanism, disrupting bacterial cell membranes and binding to bacterial genomic DNA to interfere in cellular functions, ultimately leading to cell death.

Citations

Citations to this article as recorded by  
  • Prospects for cordycepin biosynthesis in microbial cell factories
    Xiang Li, Rongshuai Jiang, Shenghou Wang, Chenyang Li, Yongping Xu, Shuying Li, Qian Li, Liang Wang
    Frontiers in Chemical Engineering.2024;[Epub]     CrossRef
  • Dopamine-grafted oxidized hyaluronic acid/gelatin/cordycepin nanofiber membranes modulate the TLR4/NF-kB signaling pathway to promote diabetic wound healing
    Ning Wang, Bo Hong, Yingchun Zhao, Chuanbo Ding, Guodong Chai, Yue Wang, Jiali Yang, Lifeng Zhang, Weimin Yu, Yang Lu, Shuang Ma, Shuai Zhang, Xinglong Liu
    International Journal of Biological Macromolecules.2024; 262: 130079.     CrossRef
  • Research Progress in Understanding the Molecular Biology of Cordyceps militaris
    Lihong Wang, Ganghua Li, Xueqin Tian, Yitong Shang, Huanhuan Yan, Lihua Yao, Zhihong Hu
    Fermentation.2024; 10(3): 167.     CrossRef
  • Screening and evaluation of antibacterial active strains of Actinomycetes isolated from Northern Indian soil for biofilm inhibition against selected ESKAPE pathogens
    Muzammil Sharief Dar, Iqbal Ahmad
    Journal of Umm Al-Qura University for Applied Sciences.2024;[Epub]     CrossRef
  • Cordycepin Enhanced Therapeutic Potential of Gemcitabine against Cholangiocarcinoma via Downregulating Cancer Stem-Like Properties
    Hong Kyu Lee, Yun-Jung Na, Su-Min Seong, Dohee Ahn, Kyung-Chul Choi
    Biomolecules & Therapeutics.2024; 32(3): 368.     CrossRef
  • Cordycepin alleviates hepatic fibrosis in association with the inhibition of glutaminolysis to promote hepatic stellate cell senescence
    Zhu Liang, Keyan Zhang, Hongli Guo, Xujiao Tang, Mingzhu Chen, Jinsong Shi, Jing Yang
    International Immunopharmacology.2024; 132: 111981.     CrossRef
  • 16S amplicon sequencing and untargeted metabolomics reveal changes in rumen microorganisms and metabolic pathways involved in the reduction of methane by cordycepin
    Haokai Ma, Dengke Liu, Rui Liu, Yang Li, Modinat Tolani Lambo, Baisheng Dai, Weizheng Shen, Yongli Qu, Yonggen Zhang
    Journal of Integrative Agriculture.2024;[Epub]     CrossRef
  • Synergistic fermentation of Cordyceps militaris and herbal substrates boosts grower pig antioxidant and immune function
    Chia-Chen Pi, Yu-Chieh Cheng, Chun-Chia Chen, Jai-Wei Lee, Chao-Nan Lin, Ming-Tang Chiou, Hui-Wen Chen, Chiu-Hsia Chiu
    BMC Veterinary Research.2024;[Epub]     CrossRef
  • Silkworm pupae globulin promotes Cordyceps militaris fermentation: Regulation of metabolic pathways enhances cordycepin synthesis and extends the synthesis phase
    Yi-Tong Li, Hao-Tian Yao, Ze-Lai Huang, Lu-Chan Gong, Richard A. Herman, Fu-An Wu, Jun Wang
    Food Bioscience.2024; 59: 103971.     CrossRef
  • Promising ingredients used for kimchi fermentation: Effects of cordyceps militaris fermentation products on the over-acidification and quality of kimchi
    Tiejun Chen, Dejian Jiao, Zhe Wang, Meizi Piao
    Food Bioscience.2024; 61: 104941.     CrossRef
  • Evidence for Regulation of Cordycepin Biosynthesis by Transcription Factors Krüppel-Like Factor 4 and Retinoid X Receptor Alpha in Caterpillar Medicinal Mushroom Cordyceps militaris (Ascomycetes)
    Hucheng Zhang, Lina Deng, Shuai Luo, Linying Liu, Guowei Yang, Yuning Zhang, Bo Gao, Dongqing Yang, Xiaojie Wang, Shuangshi Li, Xingjuan Li, Yaguang Jiang, Wenyan Lao, Frank Vriesekoop
    International Journal of Medicinal Mushrooms.2024; 26(10): 19.     CrossRef
  • Ethanolic extract from fruiting bodies of Cordyceps militaris HL8 exhibits cytotoxic activities against cancer cells, skin pathogenic yeasts, and postharvest pathogen Penicillium digitatum
    Tao Xuan Vu, Tram Bao Tran, Hong-Ha Vu, Yen Thi Hoang Le, Phu Hung Nguyen, Thao Thi Do, Thu-Huong Nguyen, Van-Tuan Tran
    Archives of Microbiology.2024;[Epub]     CrossRef
  • Paecilomyces cicadae : a systematic overview of the biological activities and potential mechanisms of its active metabolites
    Di Feiqian, Zhang Jiachan, Cheng Wenjing, Li Luyao, Li Meng, Wang Changtao
    Food and Agricultural Immunology.2023;[Epub]     CrossRef
  • Design, synthesis, antibacterial/antitumor activity and in vitro stability of novel cordycepin derivatives with unsaturated fatty acid chain
    Shuhao Qu, Qiang Wang, Yanli Wang, Lihong Li, Lifei Zhu, Xiuhua Kuang, Xiaoli Wang, Huijuan Li, Longxuan Zhao, Hong Dai
    European Journal of Pharmaceutical Sciences.2023; 187: 106466.     CrossRef
  • Development of an efficient method for separation and purification of cordycepin from liquid fermentation of Cordyceps militaris and analysis of cordycepin antitumor activity
    Peng-xiao Liu, Jie-xin Ma, Rui-na Liang, Xiang-wei He, Guo-zhu Zhao
    Heliyon.2023; 9(3): e14184.     CrossRef
  • A novel complementary pathway of cordycepin biosynthesis in Cordyceps militaris
    Hucheng Zhang, Jun Yang, Shuai Luo, Linying Liu, Guowei Yang, Bo Gao, Haitao Fan, Lina Deng, Ming Yang
    International Microbiology.2023; 27(4): 1009.     CrossRef
  • Antifungal Mechanism of Cinnamon Essential Oil against Chinese Yam-Derived Aspergillus niger
    Mingcheng Wang, Huiyuan Liu, Yuanyuan Dang, Dahong Li, Zhu Qiao, Gailing Wang, Guo Liu, Jin Xu, Enzhong Li, Anand Babu Perumal
    Journal of Food Processing and Preservation.2023; 2023: 1.     CrossRef
  • Characterization of a Plant Growth-Promoting Endohyphal Bacillus subtilis in Fusarium acuminatum from Spiranthes sinensis
    LAN FANG, XIAO ZHENG, ZHENGXIANG SUN, YANYAN LI, JIANXIN DENG, YI ZHOU
    Polish Journal of Microbiology.2023; 72(1): 29.     CrossRef
  • Cordycepin: A review of strategies to improve the bioavailability and efficacy
    Min Chen, Jiahao Luo, Wenming Jiang, Lijing Chen, Longxing Miao, Chunchao Han
    Phytotherapy Research.2023; 37(9): 3839.     CrossRef
  • Efficient de novo production of bioactive cordycepin by Aspergillus oryzae using a food-grade expression platform
    Sukanya Jeennor, Jutamas Anantayanon, Sarocha Panchanawaporn, Chanikul Chutrakul, Wanwipa Vongsangnak, Kobkul Laoteng
    Microbial Cell Factories.2023;[Epub]     CrossRef
  • Effects of Acremonium terricola Culture on the Growth, Slaughter Yield, Immune Organ, Serum Biochemical Indexes, and Antioxidant Indexes of Geese
    Jinyuan Chen, Yawen Guo, Yang Lu, Zhaoyuan He, Yali Zhu, Shuyu Liu, Kaizhou Xie
    Animals.2022; 12(9): 1164.     CrossRef
  • Plant and fungi derived analgesic natural products targeting voltage-gated sodium and calcium channels
    Aida Calderon-Rivera, Santiago Loya-Lopez, Kimberly Gomez, Rajesh Khanna
    Channels.2022; 16(1): 198.     CrossRef
  • Multifunctional dynamic toolbox: cordycepin plays a therapeutic role in various disorders
    Nur Syahirah H.S. Hadi, Anis A. Jamaludin, Tharani Kalaiyarasan, Kartikeya Tiwari
    Reviews in Medical Microbiology.2022; 33(1): e23.     CrossRef
  • Cordycepin exhibits anti-bacterial and anti-inflammatory effects against gastritis in Helicobacter pylori-infected mice
    Wenjie Kong, Weidong Liu, Man Wang, Wenjia Hui, Yan Feng, Jiajie Lu, Buya Miranbieke, Huan Liu, Feng Gao
    Pathogens and Disease.2022;[Epub]     CrossRef
  • Gene rppA co-regulated by LRR, SigA, and CcpA mediates antibiotic resistance in Bacillus thuringiensis
    Xia Cai, Xuelian Li, Jiaxin Qin, Yizhuo Zhang, Bing Yan, Jun Cai
    Applied Microbiology and Biotechnology.2022; 106(17): 5687.     CrossRef
  • Chinese Cordyceps: Bioactive Components, Antitumor Effects and Underlying Mechanism—A Review
    Yan Liu, Zhi-Jian Guo, Xuan-Wei Zhou
    Molecules.2022; 27(19): 6576.     CrossRef
  • Gold nanoparticle-DNA aptamer-assisted delivery of antimicrobial peptide effectively inhibits Acinetobacter baumannii infection in mice
    Jaeyeong Park, Eunkyoung Shin, Ji-Hyun Yeom, Younkyung Choi, Minju Joo, Minho Lee, Je Hyeong Kim, Jeehyeon Bae, Kangseok Lee
    Journal of Microbiology.2022; 60(1): 128.     CrossRef
  • Cordycepin enhances hyperthermia-induced apoptosis and cell cycle arrest by modulating the MAPK pathway in human lymphoma U937 cells
    Liying Shi, He Cao, Siyu Fu, Zixian Jia, Xuan Lu, Zhengguo Cui, Dayong Yu
    Molecular Biology Reports.2022; 49(9): 8673.     CrossRef
  • Research Progress on Cordycepin Synthesis and Methods for Enhancement of Cordycepin Production in Cordyceps militaris
    Li Wang, Huanhuan Yan, Bin Zeng, Zhihong Hu
    Bioengineering.2022; 9(2): 69.     CrossRef
  • Cordycepin as a Metabolite with Pharmacological Potential: A Review
    Shivani Sharma, Kashish Madaan, Ravneet Kaur
    International Journal of Medicinal Mushrooms.2022; 24(8): 1.     CrossRef
  • Study on the Inhibitory Activity and Possible Mechanism of Myriocin on Clinically Relevant Drug-Resistant Candida albicans and Its Biofilms
    Xin Yang, Zejun Pei, Renjing Hu, Zhehao Zhang, Zaixiang Lou, Xin Sun
    Biological and Pharmaceutical Bulletin.2021; 44(3): 305.     CrossRef
  • Label free-based proteomic analysis of the food spoiler Pseudomonas fluorescens response to lactobionic acid by SWATH-MS
    Shimo Kang, Chunlei Shi, Jiang Chang, Fanhua Kong, Mohan Li, Boyuan Guan, Zhenghan Zhang, Xinyang Shi, Huiwen Zhao, Yanqi Peng, Yan Zheng, Xiqing Yue
    Food Control.2021; 123: 107834.     CrossRef
  • Isolation, identification, and control of a resistant bacterium strain found in Ku shui rose pure dew
    Lijun Ling, Caiyun Yang, Wenxia Ma, Yunhua Zhao, Shenglai Feng, Yixin Tu, Nan Wang, Zibin Li, Lu Lu
    Journal of Food Processing and Preservation.2021;[Epub]     CrossRef
  • The Antibacterial Properties of 4, 8, 4′, 8′-Tetramethoxy (1,1′-biphenanthrene) -2,7,2′,7′-Tetrol from Fibrous Roots of Bletilla striata
    Xue-Jiao Huang, Nan Xiong, Bo-Chen Chen, Fan Luo, Min Huang, Zhi-Shan Ding, Chao-Dong Qian
    Indian Journal of Microbiology.2021; 61(2): 195.     CrossRef
  • Drug Delivery of Natural Products Through Nanocarriers for Effective Breast Cancer Therapy: A Comprehensive Review of Literature
    Kah Min Yap, Mahendran Sekar, Shivkanya Fuloria, Yuan Seng Wu, Siew Hua Gan, Nur Najihah Izzati Mat Rani, Vetriselvan Subramaniyan, Chandrakant Kokare, Pei Teng Lum, M Yasmin Begum, Shankar Mani, Dhanalekshmi Unnikrishnan Meenakshi, Kathiresan V Sathasiva
    International Journal of Nanomedicine.2021; Volume 16: 7891.     CrossRef
  • Evaluation of Anti-Biofilm Capability of Cordycepin Against Candida albicans
    Yu Wang, Zejun Pei, Zaixiang Lou, Hongxin Wang
    Infection and Drug Resistance.2021; Volume 14: 435.     CrossRef
  • Enhanced production of cordycepin in Ophiocordyceps sinensis using growth supplements under submerged conditions
    Vikas Kaushik, Amanvir Singh, Aditi Arya, Sangeeta Chahal Sindhu, Anil Sindhu, Ajay Singh
    Biotechnology Reports.2020; 28: e00557.     CrossRef
  • A How-To Guide for Mode of Action Analysis of Antimicrobial Peptides
    Ann-Britt Schäfer, Michaela Wenzel
    Frontiers in Cellular and Infection Microbiology.2020;[Epub]     CrossRef
  • Synthesis of cordycepin: Current scenario and future perspectives
    Liyang Yang, Guilan Li, Zhi Chai, Qiang Gong, Jianquan Guo
    Fungal Genetics and Biology.2020; 143: 103431.     CrossRef

Journal of Microbiology : Journal of Microbiology
TOP