Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
4 "membrane protein"
Filter
Filter
Article category
Keywords
Publication year
Journal Article
Genetic Characteristics and Phylogeographic Dynamics of Echovirus
Yan Wang , Pir Tariq Shah , Yue Liu , Amina Nawal Bahoussi , Li Xing
J. Microbiol. 2023;61(9):865-877.   Published online September 15, 2023
DOI: https://doi.org/10.1007/s12275-023-00078-w
  • 19 View
  • 0 Download
AbstractAbstract
Echoviruses belong to the genus Enterovirus in the Picornaviridae family, forming a large group of Enterovirus B (EVB) within the Enteroviruses. Previously, Echoviruses were classified based on the coding sequence of VP1. In this study, we performed a reliable phylogenetic classification of 277 sequences isolated from 1992 to 2019 based on the full-length genomes of Echovirus. In this report, phylogenetic, phylogeographic, recombination, and amino acid variability landscape analyses were performed to reveal the evolutional characteristics of Echovirus worldwide. Echoviruses were clustered into nine major clades, e.g., G1–G9. Phylogeographic analysis showed that branches G2–G9 were linked to common strains, while the branch G1 was only linked to G5. In contrast, strains E12, E14, and E16 clustered separately from their G3 and G7 clades respectively, and became a separate branch. In addition, we identified a total of 93 recombination events, where most of the events occurred within the VP1-VP4 coding regions. Analysis of amino acid variation showed high variability in the a positions of VP2, VP1, and VP3. This study updates the phylogenetic and phylogeographic information of Echovirus and indicates that extensive recombination and significant amino acid variation in the capsid proteins drove the emergence of new strains.
Observational Study
Early gut microbiota in very low and extremely low birth weight preterm infants with feeding intolerance: a prospective case-control study
Ling Liu , Dang Ao , Xiangsheng Cai , Peiyi Huang , Nali Cai , Shaozhu Lin , Benqing Wu
J. Microbiol. 2022;60(10):1021-1031.   Published online August 19, 2022
DOI: https://doi.org/10.1007/s12275-022-2180-2
  • 15 View
  • 0 Download
  • 8 Citations
AbstractAbstract
The potential role of the gut microbiota in the pathogenesis of feeding intolerance (FI) remains unclear. Understanding the role of the gut microbiota could provide a new avenue for microbiota-targeted therapeutics. This study aimed to explore the associations between aberrant gut microbiota and FI in very low or extremely low birth weight (VLBW/ELBW) preterm infants. In this observational case-control study, VLBW/ ELBW infants were divided into two groups: FI group and feeding tolerance (FT) group. 16S rRNA gene sequencing was performed to analyze the gut microbial diversity and composition of the infants. The differences in the gut microbiota of the two groups were compared. In total, 165 stool samples were obtained from 44 infants, among which, 31 developed FI and 13 served as controls. Alpha diversity was the highest in the meconium samples of the two groups. LEfSe analysis revealed that the abundances of Peptostreptococcaceae, Clostridiales and Clostridia in the FT group were significantly higher than in the FI group. At the phylum level, the FI group was dominated by Proteobacteria, and the FT group was dominated by Firmicutes. The meconium samples of the FI group had higher proportions of γ-proteobacteria and Escherichia-Shigella and a lower proportion of Bacteroides compared with the FT group. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis demonstrated that aberrant gut bacteria in the FI group were strongly associated with dysregulation of C5-Brancheddibasic- acid-metabolism, protein kinases, and sporulation. These findings reveal candidate microbial markers to prevent FI. Increased relative abundances of γ-proteobacteria and Escherichia-Shigella and decreased abundance of Bacteroides in meconium were associated with an increased risk of FI, while Peptostreptococcaceae, Clostridiales and Clostridia reduced the risk of FI in VLBW/ELBW infants.
Journal Articles
Assessing the microcystins concentration through optimized protein phosphatase inhibition assay in environmental samples
Kyoung-Hee Oh , Kung-Min Beak , Yuna Shin , Young-Cheol Cho
J. Microbiol. 2022;60(6):602-609.   Published online April 30, 2022
DOI: https://doi.org/10.1007/s12275-022-2020-4
  • 21 View
  • 0 Download
  • 5 Citations
AbstractAbstract
Protein phosphatase (PPase) inhibition assay (PPIA) is widely used to analyze the concentration of microcystins (MCs) because it is comparatively less expensive and faster than other assays. This study aimed to optimize the PPIA by determining a suitable reaction terminator and an optimal methanol concentration in the sample. The most suitable reaction time was 90 min, with the corresponding methanol concentration in the sample being 15% or less. When p-nitrophenyl phosphate (pNPP) was used as a substrate, copper chloride solution was suitably used as a reaction terminator, and when 4- methylumbelliferyl phosphate (MUP) was used, a glycine buffer not only increased the measurement sensitivity of the reaction product but also terminated the enzymatic reaction. When PPase 1 and MUP were used as an enzyme and a substrate, respectively, the limit of quantitation for MC-leucine/ arginine (LR) was 0.02 μg/L, whereas it was 0.1 μg/L when pNPP was used as a substrate. The proposed method facilitated the measurement of MC-LR concentration without additional pretreatments, such as concentration or purification; therefore, this method was suitable and feasible for the continuous monitoring of MCs in drinking water.
The relationship between bacterial diversity and organic carbon mineralization in soft rock and sand compound soil
Zhen Guo , Juan Li , Lei Ge , Chenxi Yang , Jichang Han
J. Microbiol. 2020;58(9):750-760.   Published online July 24, 2020
DOI: https://doi.org/10.1007/s12275-020-0130-4
  • 15 View
  • 0 Download
  • 3 Citations
AbstractAbstract
The soil organic carbon (SOC) mineralization rate in sandy soil plays an important role in improving soil quality, and a research is needed to determine management practices that optimize the mineralization rate. When sandy soil is improved by adding soft rock, the specific promotion process of bacterium to SOC mineralization remain unclear. To investigate these mechanisms, we selected four treatments with soft rock to sand volume ratios of 0:1 (CK), 1:5 (C1), 1:2 (C2) and 1:1 (C3) to study. The mineralization rate of organic carbon was measured using the lye absorption method. Highthroughput sequencing and scanning electron microscopy were used to determine the bacterial community structure and soil microstructure, respectively. The results showed that the organic carbon content of the sandy soil increased significantly (182.22–276.43%) after using the soft rock treatments. The SOC mineralization rate could be divided into two stages: a rapid decline during days 1–8 and a slow decline during days 8–60. With increased incubation time, the intensity of the cumulative release of organic carbon gradually weakened. Compared with the CK treatment, the SOC mineralization accumulation (Ct) and the potential mineralizable organic carbon content (C0) in the C1, C2, and C3 treatments increased significantly, by 106.98–225.94% and 112.22– 254.08%, respectively. The cumulative mineralization rate (Cr) was 18.11% and 21.38% smaller with treatments C2 and C3, respectively. The SOC mineralization rate constant (k) decreased significantly after the addition of soft rock, while the half-turnover period (Th) changed inversely with k. Compared with the CK treatment, the number of gene copies of the soil bacteria increased by 15.38–272.53% after adding soft rock, with the most significant increase in treatment C3. The bacterial diversity index also increased significantly under treatment C3. The three dominant bacteria were Proteobacteria, Actinobacteria, and Chloroflexi. The correlation between Cr and one of the non-dominant bacteria, Firmicutes, was large, and the bacteria had a significant positive correlation with k. At the same time, the abundance of Firmicutes under treatments C2 and C3 was small. As the proportion of soft rock increased, the soil particles changed from point contact to surface contact, and the adhesion on the surface of the particles gradually increased. Results from this study show that the retention time of SOC can be increased and the carbon sequestration effect is better when the ratio of soft rock to sand is set to 1:2.

Journal of Microbiology : Journal of Microbiology
TOP