Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
2 "mercury"
Filter
Filter
Article category
Keywords
Publication year
Journal Articles
The inner membrane protein LapB is required for adaptation to cold stress in an LpxC-independent manner
Han Byeol Lee , Si Hyoung Park , Chang-Ro Lee
J. Microbiol. 2021;59(7):666-674.   Published online May 15, 2021
DOI: https://doi.org/10.1007/s12275-021-1130-8
  • 13 View
  • 0 Download
  • 10 Citations
AbstractAbstract
The inner membrane protein lipopolysaccharide assembly protein B (LapB) is an adaptor protein that activates the proteolysis of LpxC by an essential inner membrane metalloprotease, FtsH, leading to a decrease in the level of lipopolysaccharide in the membrane. In this study, we revealed the mechanism by which the essential inner membrane protein YejM regulates LapB and analyzed the role of the transmembrane domain of LapB in Escherichia coli. The transmembrane domain of YejM genetically and physically interacted with LapB and inhibited its function, which led to the accumulation of LpxC. The transmembrane domain of LapB was indispensable for both its physical interaction with YejM and its regulation of LpxC proteolysis. Notably, we found that the lapB mutant exhibited strong cold sensitivity and this phenotype was not associated with increased accumulation of LpxC. The transmembrane domain of LapB was also required for its role in adaptation to cold stress. Taken together, these
results
showed that LapB plays an important role in both the regulation of LpxC level, which is controlled by its interaction with the transmembrane domain of YejM, and adaptation to cold stress, which is independent of LpxC.
Autophagic elimination of Trypanosoma cruzi in the presence of metals
Laís Pessanha de Carvalho , Edésio José Tenório de Melo
J. Microbiol. 2019;57(10):918-926.   Published online August 28, 2019
DOI: https://doi.org/10.1007/s12275-019-9018-6
  • 10 View
  • 0 Download
  • 2 Citations
AbstractAbstract
Trypanosoma cruzi is an obligate intracellular parasite transmitted to vertebrate hosts by blood-sucking insects. Molecules present in parasites and mammalian cells allow the recognition and parasite internalization. Metallic ions play an essential role in the establishment and maintenance of hostparasite interaction. However, little is known about how parasites handle with essential and nonessential metal quotas. This study aimed to investigate the influence of metal ions on the biological processes of T. cruzi infected cells. Infected cells were incubated with ZnCl2, CdCl2, and HgCl2 for 12 h and labeled with different specific dyes to investigate the cellular events related to intracellular parasite death and elimination. Infected host cells and parasite’s mitochondria underwent functional and structural disorders, in addition to parasite’s DNA condensation and pH decrease on host cells, which led to parasite death. Further investigations suggested that lysosomes were involved in pH decrease and the double membrane of the endoplasmic reticulum formed vacuoles surrounding damaged parasites, which indicate the occurrence of autophagy for parasite elimination. In conclusion, low concentrations of nonessential and essential metals cause a series of damage to Trypanosoma cruzi organelles, leading to its loss of viability, death, and elimination, with no removal of the host cells.

Journal of Microbiology : Journal of Microbiology
TOP