Search
- Page Path
-
HOME
> Search
Journal Articles
- Identification of avaC from Human Gut Microbial Isolates that Converts 5AVA to 2-Piperidone.
-
Qiudi Zhou, Lihui Feng
-
J. Microbiol. 2024;62(5):367-379. Published online June 17, 2024
-
DOI: https://doi.org/10.1007/s12275-024-00141-0
-
-
Abstract
- 2-piperidone is a crucial industrial raw material of high-value nylon-5 and nylon-6,5. Currently, a major bottleneck in the biosynthesis of 2-piperidone is the identification of highly efficient 2-piperidone synthases. In this study, we aimed to identify specific strains among 51 human gut bacterial strains capable of producing 2-piperidone and to elucidate its synthetic mechanism. Our findings revealed that four gut bacterial strains, namely Collinsella aerofaciens LFYP39, Collinsella intestinalis LFYP54, Clostridium bolteae LFYP116, and Clostridium hathewayi LFYP18, could produce 2-piperidone from 5-aminovaleric acid (5AVA).
Additionally, we observed that 2-piperidone could be synthesized from proline through cross-feeding between Clostridium difficile LFYP43 and one of the four 2-piperidone producing strains, respectively. To identify the enzyme responsible for catalyzing the conversion of 5AVA to 2-piperidone, we utilized a gain-of-function library and identified avaC (5-aminovaleric acid cyclase) in C.
intestinalis LFYP54. Moreover, homologous genes of avaC were validated in the other three bacterial strains. Notably, avaC were found to be widely distributed among environmental bacteria. Overall, our research delineated the gut bacterial strains and genes involved in 2-piperidone production, holding promise for enhancing the efficiency of industrial biosynthesis of this compound.
- Autotrophy to Heterotrophy: Shift in Bacterial Functions During the Melt Season in Antarctic Cryoconite Holes.
-
Aritri Sanyal, Runa Antony, Gautami Samui, Meloth Thamban
-
J. Microbiol. 2024;62(8):591-609. Published online May 30, 2024
-
DOI: https://doi.org/10.1007/s12275-024-00140-1
-
-
24
View
-
0
Download
-
2
Citations
-
Abstract
- Microbes residing in cryoconite holes (debris, water, and nutrient-rich ecosystems) on the glacier surface actively participate in carbon and nutrient cycling. Not much is known about how these communities and their functions change during the summer melt-season when intense ablation and runoff alter the influx and outflux of nutrients and microbes. Here, we use high-throughput-amplicon sequencing, predictive metabolic tools and Phenotype MicroArray techniques to track changes in bacterial communities and functions in cryoconite holes in a coastal Antarctic site and the surrounding fjord, during the summer season. The bacterial diversity in cryoconite hole meltwater was predominantly composed of heterotrophs (Proteobacteria) throughout the season. The associated functional potentials were related to heterotrophic-assimilatory and -dissimilatory pathways. Autotrophic Cyanobacterial lineages dominated the debris community at the beginning and end of summer, while heterotrophic Bacteroidota- and Proteobacteria-related phyla increased during the peak melt period. Predictive functional analyses based on taxonomy show a shift from predominantly phototrophy-related functions to heterotrophic assimilatory pathways as the melt-season progressed. This shift from autotrophic to heterotrophic communities within cryoconite holes can affect carbon drawdown and nutrient liberation from the glacier surface during the summer. In addition, the flushing out and export of cryoconite hole communities to the fjord could influence the biogeochemical dynamics of the fjord ecosystem.
- Phylogenetic Assessment of Understudied Families in Hymenochaetales (Basidiomycota, Fungi)-Reporting Uncovered Species and Reflecting the Recent Taxonomic Updates in the Republic of Korea.
-
Yoonhee Cho, Dohye Kim, Young Woon Lim
-
J. Microbiol. 2024;62(6):429-447. Published online May 16, 2024
-
DOI: https://doi.org/10.1007/s12275-024-00120-5
-
-
Abstract
- Hymenochaetales Oberw. is an order classified in Basidiomycota of Fungi, and species in this order display notable diversity. They exhibit various fruiting body shapes, including clavarioid, effused-reflexed, and resupinate basidiomes.
Few mycorrhizal species have been reported in Hymenochaetales, but wood-decaying species dominate the order. Hymenochaetaceae Imazeki & Toki and Schizoporaceae Jülich are the most species-rich families within Hymenochaetales, and most species in the Republic of Korea belong to these two families. As such, current taxonomic classification and nomenclature are not reflected upon species in the remaining Hymenochaetales families. For this study, a multifaceted morphological and multigenetic marker-based phylogenetic investigation was conducted to, firstly, comprehensively identify understudied Hymenochaetales specimens in Korea and, secondly, reflect the updates on the species classification. Five genetic markers were assessed for the phylogenetic analysis: nuclear small subunit ribosomal DNA (nSSU), internal transcribed spacer (ITS), nuclear large subunit ribosomal DNA (nLSU), RNA polymerase II subunit 2 gene (RPB2), and translation elongation factor 1 gene (TEF1). The results from phylogenetic analysis supported 18 species classified under eight families (excluding Hymenochaetaceae and Schizoporaceae) in Korea. Species formerly placed in Rickenellaceae and Trichaptum sensu lato have been systematically revised based on recent taxonomic reconstructions. In addition, our findings revealed one new species, Rickenella umbelliformis, and identified five formerly nationally unreported species classified under five understudied families. Our findings contribute to a better understanding of Hymenochaetales diversity and highlight the need for continued research.
- Vaccine Development for Severe Fever with Thrombocytopenia Syndrome Virus in Dogs.
-
Seok-Chan Park, Da-Eun Jeong, Sun-Woo Han, Joon-Seok Chae, Joo-Yong Lee, Hyun-Sook Kim, Bumseok Kim, Jun-Gu Kang
-
J. Microbiol. 2024;62(4):327-335. Published online April 18, 2024
-
DOI: https://doi.org/10.1007/s12275-024-00119-y
-
-
Abstract
- Severe fever with thrombocytopenia syndrome (SFTS) is a life-threatening viral zoonosis. The causative agent of this disease is the Dabie bandavirus, which is usually known as the SFTS virus (SFTSV). Although the role of vertebrates in SFTSV transmission to humans remains uncertain, some reports have suggested that dogs could potentially transmit SFTSV to humans. Consequently, preventive measures against SFTSV in dogs are urgently needed. In the present study, dogs were immunized three times at two-week intervals with formaldehyde-inactivated SFTSV with two types of adjuvants. SFTSV (KCD46) was injected into all dogs two weeks after the final immunization. Control dogs showed viremia from 2 to 4 days post infection (dpi), and displayed white pulp atrophy in the spleen, along with a high level of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling assay (TUNEL) positive area. However, the inactivated SFTSV vaccine groups exhibited rare pathological changes and significantly reduced TUNEL positive areas in the spleen. Furthermore, SFTSV viral loads were not detected at any of the tested dpi. Our results indicate that both adjuvants can be safely used in combination with an inactivated SFTSV formulation to induce strong neutralizing antibodies. Inactivated SFTSV vaccines effectively prevent pathogenicity and viremia in dogs infected with SFTSV. In conclusion, our study highlighted the potential of inactivated SFTSV vaccination for SFTSV control in dogs.
- Vaginal Microbiome Dysbiosis is Associated with the Different Cervical Disease Status
-
Yingying Ma , Yanpeng Li , Yanmei Liu , Le Cao , Xiao Han , Shujun Gao , Chiyu Zhang
-
J. Microbiol. 2023;61(4):423-432. Published online April 3, 2023
-
DOI: https://doi.org/10.1007/s12275-023-00039-3
-
-
24
View
-
0
Download
-
3
Citations
-
Abstract
- Vaginal microbiome composition was demonstrated to be associated with cervical disease. The colonization characteristics
of vaginal microbes and their association with the different cervical disease status, especially cervical cancer (CC), are
rarely investigated. In this cross-sectional study, we characterized the vaginal microbiome of women with different status of
cervical diseases, including 22 NV + (normal tissue with HPV infection), low-grade squamous intraepithelial lesion (LSIL,
n = 45), high-grade squamous intraepithelial lesion (HSIL, n = 36) and CC (n = 27) using bacterial 16S DNA sequencing.
Thirty HPV-negative women with normal tissue were used as the control group. We found that higher diversity of microbiome
with gradual depletion of Lactobacillus, especially L. crispatus, was associated with the severity of cervical disease.
High-risk HPV16 infection was associated with higher microbiome diversity and depletion of Lactobacillus in high-grade
cervical diseases (i.e. HSIL and CC). The CC group was characterized by higher levels of Fannyhessea vaginae, Prevotella,
Bacteroides, Finegoldia, Vibrio, Veillonella, Peptostreptococcus, and Dialister. Co-occurrence network analyses showed that
negative correlations were exclusively observed between Lactobacillus and other bacteria, and almost all non-Lactobacillus
bacteria were positively correlated with each other. In particular, the most diverse and complex co-occurrence network of
vaginal bacteria, as well as a complete loss of L. crispatus, was observed in women with CC. Logistic regression model
identified HPV16 and Lactobacillus as significant risk and protective factors for CC, respectively. These results suggest that
specific Lactobacillus species (e.g. L. crispatus and L. iners) can be used as important markers to target prevention measures
prioritizing HPV16-infected women and other hrHPV-infected women for test, vaccination and treat initiatives.
- Salicibibacter cibarius sp. nov. and Salicibibacter cibi sp. nov., two novel species of the family Bacillaceae isolated from kimchi
-
Young Joon Oh , Joon Yong Kim , Seul Ki Lim , Min-Sung Kwon , Hak-Jong Choi
-
J. Microbiol. 2021;59(5):460-466. Published online April 28, 2021
-
DOI: https://doi.org/10.1007/s12275-021-0513-1
-
-
Abstract
- To date, all species in the genus Salicibibacter have been isolated
in Korean commercial kimchi. We aimed to describe
the taxonomic characteristics of two strains, NKC5-3T and
NKC21-4T, isolated from commercial kimchi collected from
various regions in the Republic of Korea. Cells of these strains
were rod-shaped, Gram-positive, aerobic, oxidase- and catalase-
positive, non-motile, halophilic, and alkalitolerant. Both
strains, unlike other species of the genus Salicibibacter, could
not grow without NaCl. Strains NKC5-3T and NKC21-4T
could tolerate up to 25.0% (w/v) NaCl (optimum 10%) and
grow at pH 7.0–10.0 (optimum 8.5) and 8.0–9.0 (optimum
8.5), respectively; they showed 97.1% 16S rRNA gene sequence
similarity to each other and were most closely related
to S. kimchii NKC1-1T (97.0% and 96.8% similarity, respectively).
The genome of strain NKC5-3T was nearly 4.6 Mb in
size, with 4,456 protein-coding sequences (CDSs), whereas
NKC21-4T genome was nearly 3.9 Mb in size, with 3,717 CDSs.
OrthoANI values between the novel strains and S. kimchii
NKC1-1T were far lower than the species demarcation threshold.
NKC5-3T and NKC21-4T clustered together to form
branches that were distinct from the other Salicibibacter species.
The major fatty acids in these strains were anteiso-C15:0
and anteiso-C17:0, and the predominant menaquinone was
menaquinone-7. The polar lipids of NKC5-3T included diphosphatidylglycerol
(DPG), phosphatidylglycerol (PG), and
five unidentified phospholipids (PL), and those of NKC21-4T
included DPG, PG, seven unidentified PLs, and an unidentified
lipid. Both isolates had DPG, which is the first case in
the genus Salicibibacter. The genomic G + C content of strains
NKC5-3T and NKC21-4T was 44.7 and 44.9 mol%, respectively.
Based on phenotypic, genomic, phylogenetic, and chemotaxonomic
analyses, strains NKC5-3T (= KACC 22040T
= DSM 111417T) and NKC21-4T (= KACC 22041T = DSM
111418T) represent two novel species of the genus Salicibibacter,
for which the names Salicibibacter cibarius sp. nov.
and Salicibibacter cibi sp. nov. are proposed.
Published Erratum
TOP