Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
3 "methylglyoxal"
Filter
Filter
Article category
Keywords
Publication year
Journal Article
Those Nematode‑Trapping Fungi That are not Everywhere: Hints Towards Soil Microbial Biogeography
Wei Deng , Fa Zhang , Davide Fornacca , Xiao-Yan Yang , Wen Xiao
J. Microbiol. 2023;61(5):511-523.   Published online April 6, 2023
DOI: https://doi.org/10.1007/s12275-023-00043-7
  • 58 View
  • 0 Download
  • 2 Web of Science
  • 2 Crossref
AbstractAbstract
The existence of biogeography for microorganisms is a raising topic in ecology and researchers are employing better distinctions between single species, including the most rare ones, to reveal potential hidden patterns. An important volume of evidence supporting heterogeneous distributions for bacteria, archaea and protists is accumulating, and more recently a few efforts have targeted microscopic fungi. We propose an insight into this latter kingdom by looking at a group of soil nematode-trapping fungi whose species are well-known and easily recognizable. We chose a pure culture approach because of its reliable isolation procedures for this specific group. After morphologically and molecularly identifying all species collected from 2250 samples distributed in 228 locations across Yunnan province of China, we analyzed occurrence frequencies and mapped species, genera, and richness. Results showed an apparent cosmopolitan tendency for this group of fungi, including species richness among sites. However, only four species were widespread across the region, while nonrandom heterogeneous distributions were observed for the remaining 40 species, both in terms of statistical distribution of species richness reflected by a significant variance-to-mean ratio, as well as in terms of visually discernible spatial clusters of rare species and genera on the map. Moreover, several species were restricted to only one location, raising the question of whether endemicity exists for this microbial group. Finally, environmental heterogeneity showed a marginal contribution in explaining restricted distributions, suggesting that other factors such as geographical isolation and dispersal capabilities should be explored. These findings contribute to our understanding of the cryptic geographic distribution of microorganisms and encourage further research in this direction.

Citations

Citations to this article as recorded by  
  • Linking watershed formation with the phylogenetic distribution of a soil microscopic fungus in Yunnan Province, China
    Davide Fornacca, Wei Deng, Yaoquan Yang, Fa Zhang, Xiaoyan Yang, Wen Xiao
    BMC Microbiology.2024;[Epub]     CrossRef
  • Analysis of Nuclear Dynamics in Nematode-Trapping Fungi Based on Fluorescent Protein Labeling
    Liang Zhou, Zhiwei He, Keqin Zhang, Xin Wang
    Journal of Fungi.2023; 9(12): 1183.     CrossRef
Research Support, Non-U.S. Gov'ts
NOTE] Glyoxal Detoxification in Escherichia coli K-12 by NADPH Dependent Aldo-keto Reductases
Changhan Lee , Insook Kim , Chankyu Park
J. Microbiol. 2013;51(4):527-530.   Published online August 30, 2013
DOI: https://doi.org/10.1007/s12275-013-3087-8
  • 28 View
  • 0 Download
  • 15 Scopus
AbstractAbstract
Glyoxal (GO) and methylglyoxal (MG) are reactive carbonyl compounds that are accumulated in vivo through various pathways. They are presumably detoxified through multiple pathways including glutathione (GSH)-dependent/independent glyoxalase systems and NAD(P)H dependent reductases. Previously, we reported an involvement of aldo-ketoreductases (AKRs) in MG detoxification. Here, we investigated the role of various AKRs (YqhE, YafB, YghZ, YeaE, and YajO) in GO metabolism. Enzyme activities of the AKRs to GO were measured, and GO sensitivities of the corresponding mutants were compared. In addition, we examined inductions of the AKR genes by GO. The results indicate that AKRs efficiently detoxify GO, among which YafB, YghZ, and YeaE are major players.
Screening of Genes Related to Methylglyoxal Susceptibility
Insook Kim , Joonho Kim , Bumchan Min , Changhan Lee , Chankyu Park
J. Microbiol. 2007;45(4):339-343.
DOI: https://doi.org/2563 [pii]
  • 38 View
  • 0 Download
AbstractAbstract
Methylglyoxal (MG) is a reactive metabolite known to accumulate in certain physiological conditions. We attempted to isolate genes associated with this metabolite by genome-wide mutagenesis with TnphoA derivative. After screening on methylglyoxal-containing plate, we obtained insertions in three different genes, ydbD, yjjQ, and yqiI, which gave rise to reproducible MG-sensitive phenotypes in glyoxalase-deficient strain. In addition to its MG sensitivity, the insertion in yqiI exhibited an impaired motility resulting from a reduced flagellar expression.

Journal of Microbiology : Journal of Microbiology
TOP