Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
38 "microbiota"
Filter
Filter
Article category
Keywords
Publication year
Authors
Journal Articles
Identification of avaC from Human Gut Microbial Isolates that Converts 5AVA to 2-Piperidone.
Qiudi Zhou, Lihui Feng
J. Microbiol. 2024;62(5):367-379.   Published online June 17, 2024
DOI: https://doi.org/10.1007/s12275-024-00141-0
  • 21 View
  • 0 Download
AbstractAbstract
2-piperidone is a crucial industrial raw material of high-value nylon-5 and nylon-6,5. Currently, a major bottleneck in the biosynthesis of 2-piperidone is the identification of highly efficient 2-piperidone synthases. In this study, we aimed to identify specific strains among 51 human gut bacterial strains capable of producing 2-piperidone and to elucidate its synthetic mechanism. Our findings revealed that four gut bacterial strains, namely Collinsella aerofaciens LFYP39, Collinsella intestinalis LFYP54, Clostridium bolteae LFYP116, and Clostridium hathewayi LFYP18, could produce 2-piperidone from 5-aminovaleric acid (5AVA). Additionally, we observed that 2-piperidone could be synthesized from proline through cross-feeding between Clostridium difficile LFYP43 and one of the four 2-piperidone producing strains, respectively. To identify the enzyme responsible for catalyzing the conversion of 5AVA to 2-piperidone, we utilized a gain-of-function library and identified avaC (5-aminovaleric acid cyclase) in C. intestinalis LFYP54. Moreover, homologous genes of avaC were validated in the other three bacterial strains. Notably, avaC were found to be widely distributed among environmental bacteria. Overall, our research delineated the gut bacterial strains and genes involved in 2-piperidone production, holding promise for enhancing the efficiency of industrial biosynthesis of this compound.
Effects of Light and Dark Conditions on the Transcriptome of Aging Cultures of Candidatus Puniceispirillum marinum IMCC1322.
Ji Hyen Lee, Hyun-Myung Oh
J. Microbiol. 2024;62(4):297-314.   Published online April 25, 2024
DOI: https://doi.org/10.1007/s12275-024-00125-0
  • 25 View
  • 0 Download
AbstractAbstract
To elucidate the function of proteorhodopsin in Candidatus Puniceispirillum marinum strain IMCC1322, a cultivated representative of SAR116, we produced RNA-seq data under laboratory conditions. We examined the transcriptomes of six different cultures, including sets of expression changes under constant dark (DD), constant light (LL), and diel-cycled (LD; 14 h light: 10 h dark) conditions at the exponential and stationary/death phases. Prepared mRNA extracted from the six samples was analyzed on the Solexa Genome Analyzer with 36 cycles. Differentially expressed genes on the IMCC1322 genome were distinguished as four clusters by K-mean clustering and each CDS (n = 2546) was annotated based on the KEGG BRITE hierarchy. Cluster 0 (n = 1573) covered most constitutive genes including proteorhodopsin, retinoids, and glycolysis/TCA cycle. Cluster 1 genes (n = 754) were upregulated in stationary/death phase under constant dark conditions and included genes associated with bacterial defense, membrane transporters, nitrogen metabolism, and senescence signaling. Cluster 2 genes (n = 197) demonstrated upregulation in exponential phase cultures and included genes involved in genes for oxidative phosphorylation, translation factors, and transcription machinery. Cluster 3 (n = 22) contained light-stimulated upregulated genes expressed under stationary/phases. Stringent response genes belonged to cluster 2, but affected genes spanned various cellular processes such as amino acids, nucleotides, translation, transcription, glycolysis, fatty acids, and cell wall components. The coordinated expression of antagonistic stringent genes, including mazG, ppx/gppA, and spoT/relA may provide insight into the controlled cultural response observed between constant light and constant dark conditions in IMCC1322 cultures, regardless of cell numbers and biomass.
Reviews
Balancing Act of the Intestinal Antimicrobial Proteins on Gut Microbiota and Health
Ye Eun Ra, Ye‑Ji Bang
J. Microbiol. 2024;62(3):167-179.   Published online April 17, 2024
DOI: https://doi.org/10.1007/s12275-024-00122-3
  • 30 View
  • 1 Download
  • 2 Citations
AbstractAbstract
The human gut houses a diverse and dynamic microbiome critical for digestion, metabolism, and immune development, exerting profound efects on human health. However, these microorganisms pose a potential threat by breaching the gut barrier, entering host tissues, and triggering infections, uncontrolled infammation, and even sepsis. The intestinal epithelial cells form the primary defense, acting as a frontline barrier against microbial invasion. Antimicrobial proteins (AMPs), produced by these cells, serve as innate immune efectors that regulate the gut microbiome by directly killing or inhibiting microbes. Abnormal AMP production, whether insufcient or excessive, can disturb the microbiome equilibrium, contributing to various intestinal diseases. This review delves into the complex interactions between AMPs and the gut microbiota and sheds light on the role of AMPs in governing host-microbiota interactions. We discuss the function and mechanisms of action of AMPs, their regulation by the gut microbiota, microbial evasion strategies, and the consequences of AMP dysregulation in disease. Understanding these complex interactions between AMPs and the gut microbiota is crucial for developing strategies to enhance immune responses and combat infections within the gut microbiota. Ongoing research continues to uncover novel aspects of this intricate relationship, deepening our understanding of the factors shaping gut health. This knowledge has the potential to revolutionize therapeutic interventions, ofering enhanced treatments for a wide range of gut-related diseases.
Skin Deep: The Potential of Microbiome Cosmetics
Ju Hee Han, Hei Sung Kim
J. Microbiol. 2024;62(3):181-199.   Published online April 16, 2024
DOI: https://doi.org/10.1007/s12275-024-00128-x
  • 65 View
  • 15 Download
  • 4 Citations
AbstractAbstract
The interplay between the skin microbiome and its host is a complex facet of dermatological health and has become a critical focus in the development of microbiome cosmetics. The skin microbiome, comprising various microorganisms, is essential from birth, develops over the lifespan, and performs vital roles in protecting our body against pathogens, training the immune system, and facilitating the breakdown of organic matter. Dysbiosis, an imbalance of these microorganisms, has been implicated in a number of skin conditions such as acne, atopic dermatitis, and skin cancer. Recent scientific findings have spurred cosmetic companies to develop products that preserve and enhance the skin's microbial diversity balance. These products may incorporate elements like prebiotics, probiotics, and postbiotics, which are beneficial for the skin microbiome. Beyond topical products, there's increasing interest in ingestible beauty supplements (i.e. oral probiotics), highlighting the connection between the gut and skin. This review examines the influence of the microbiome on skin health and the emerging trends of microbiome skincare products.
MAPK Cascades in Plant Microbiota Structure and Functioning
Thijs Van Gerrewey, Hoo Sun Chung
J. Microbiol. 2024;62(3):231-248.   Published online April 8, 2024
DOI: https://doi.org/10.1007/s12275-024-00114-3
  • 29 View
  • 1 Download
  • 2 Citations
AbstractAbstract
Mitogen-activated protein kinase (MAPK) cascades are highly conserved signaling modules that coordinate diverse biological processes such as plant innate immunity and development. Recently, MAPK cascades have emerged as pivotal regulators of the plant holobiont, infuencing the assembly of normal plant microbiota, essential for maintaining optimal plant growth and health. In this review, we provide an overview of current knowledge on MAPK cascades, from upstream perception of microbial stimuli to downstream host responses. Synthesizing recent fndings, we explore the intricate connections between MAPK signaling and the assembly and functioning of plant microbiota. Additionally, the role of MAPK activation in orchestrating dynamic changes in root exudation to shape microbiota composition is discussed. Finally, our review concludes by emphasizing the necessity for more sophisticated techniques to accurately decipher the role of MAPK signaling in establishing the plant holobiont relationship.
Journal Article
Hydroxychloroquine an Antimalarial Drug, Exhibits Potent Antifungal Efficacy Against Candida albicans Through Multitargeting.
Sargun Tushar Basrani, Tanjila Chandsaheb Gavandi, Shivani Balasaheb Patil, Nandkumar Subhash Kadam, Dhairyasheel Vasantrao Yadav, Sayali Ashok Chougule, Sankunny Mohan Karuppayil, Ashwini Khanderao Jadhav
J. Microbiol. 2024;62(5):381-391.   Published online April 8, 2024
DOI: https://doi.org/10.1007/s12275-024-00111-6
  • 22 View
  • 0 Download
AbstractAbstract
Candida albicans is the primary etiological agent associated with candidiasis in humans. Unrestricted growth of C. albicans can progress to systemic infections in the worst situation. This study investigates the antifungal activity of Hydroxychloroquine (HCQ) and mode of action against C. albicans. HCQ inhibited the planktonic growth and yeast to hyphal form morphogenesis of C. albicans significantly at 0.5 mg/ml concentration. The minimum inhibitory concentrations (MIC(50)) of HCQ for C. albicans adhesion and biofilm formation on the polystyrene surface was at 2 mg/ml and 4 mg/ml respectively. Various methods, such as scanning electron microscopy, exploration of the ergosterol biosynthesis pathway, cell cycle analysis, and assessment of S oxygen species (ROS) generation, were employed to investigate HCQ exerting its antifungal effects. HCQ was observed to reduce ergosterol levels in the cell membranes of C. albicans in a dose-dependent manner. Furthermore, HCQ treatment caused a substantial arrest of the C. albicans cell cycle at the G0/G1 phase, which impeded normal cell growth. Gene expression analysis revealed upregulation of SOD2, SOD1, and CAT1 genes after HCQ treatment, while genes like HWP1, RAS1, TEC1, and CDC 35 were downregulated. The study also assessed the in vivo efficacy of HCQ in a mice model, revealing a reduction in the pathogenicity of C. albicans after HCQ treatment. These results indicate that HCQ holds for the development of novel antifungal therapies.
Review
Genomic Evolution and Recombination Dynamics of Human Adenovirus D Species: Insights from Comprehensive Bioinformatic Analysis.
Anyeseu Park, Chanhee Lee, Jeong Yoon Lee
J. Microbiol. 2024;62(5):393-407.   Published online March 7, 2024
DOI: https://doi.org/10.1007/s12275-024-00112-5
  • 24 View
  • 0 Download
  • 1 Citations
AbstractAbstract
Human adenoviruses (HAdVs) can infect various epithelial mucosal cells, ultimately causing different symptoms in infected organ systems. With more than 110 types classified into seven species (A-G), HAdV-D species possess the highest number of viruses and are the fastest proliferating. The emergence of new adenovirus types and increased diversity are driven by homologous recombination (HR) between viral genes, primarily in structural elements such as the penton base, hexon and fiber proteins, and the E1 and E3 regions. A comprehensive analysis of the HAdV genome provides valuable insights into the evolution of human adenoviruses and identifies genes that display high variation across the entire genome to determine recombination patterns. Hypervariable regions within genetic sequences correlate with functional characteristics, thus allowing for adaptation to new environments and hosts. Proteotyping of newly emerging and already established adenoviruses allows for prediction of the characteristics of novel viruses. HAdV-D species evolved in a direction that increased diversity through gene recombination. Bioinformatics analysis across the genome, particularly in highly variable regions, allows for the verification or re-evaluation of recombination patterns in both newly introduced and pre-existing viruses, ultimately aiding in tracing various biological traits such as virus tropism and pathogenesis. Our research does not only assist in predicting the emergence of new adenoviruses but also offers critical guidance in regard to identifying potential regulatory factors of homologous recombination hotspots.
Journal Articles
Effects of Feather Hydrolysates Generated by Probiotic Bacillus licheniformis WHU on Gut Microbiota of Broiler and Common carp.
Kamin Ke, Yingjie Sun, Tingting He, Wenbo Liu, Yijiao Wen, Siyuan Liu, Qin Wang, Xiaowei Gao
J. Microbiol. 2024;62(6):473-487.   Published online February 29, 2024
DOI: https://doi.org/10.1007/s12275-024-00118-z
  • 19 View
  • 0 Download
AbstractAbstract
Due to the ever-increasing demand for meat, it has become necessary to identify cheap and sustainable sources of protein for animal feed. Feathers are the major byproduct of poultry industry, which are rich in hard-to-degrade keratin protein. Previously we found that intact feathers can be digested into free amino acids, short peptides, and nano-/micro-keratin particles by the strain Bacillus licheniformis WHU in water, and the resulting feather hydrolysates exhibit prebiotic effects on mice. To explore the potential utilization of feather hydrolysate in the feed industry, we investigated its effects on the gut microbiota of broilers and fish. Our results suggest that feather hydrolysates significantly decrease and increase the diversity of gut microbial communities in broilers and fish, respectively. The composition of the gut microbiota was markedly altered in both of the animals. The abundance of bacteria with potentially pathogenic phenotypes in the gut microbial community of the fish significantly decreased. Staphylococcus spp., Pseudomonas spp., Neisseria spp., Achromobacter spp. were significantly inhibited by the feather hydrolysates. In addition, feather hydrolysates significantly improved proteolytic activity in the guts of broilers and fish. In fish, the expression levels of ZO-1 and TGF-α significantly improved after administration of feather hydrolysates. The results presented here suggest that feather hydrolysates generated by B. licheniformis WHU could be an alternative protein source in aquaculture and could exert beneficial effects on fish.
Mycobacterium tuberculosis PE_PGRS45 (Rv2615c) Promotes Recombinant Mycobacteria Intracellular Survival via Regulation of Innate Immunity, and Inhibition of Cell Apoptosis
Tao Xu , Chutong Wang , Minying Li , Jing Wei , Zixuan He , Zhongqing Qian , Xiaojing Wang , Hongtao Wang
J. Microbiol. 2024;62(1):49-62.   Published online February 9, 2024
DOI: https://doi.org/10.1007/s12275-023-00101-0
  • 21 View
  • 0 Download
AbstractAbstract
Tuberculosis (TB), a bacterial infectious disease caused by Mycobacterium tuberculosis (M. tuberculosis), is a significant global public health problem. Mycobacterium tuberculosis expresses a unique family of PE_PGRS proteins that have been implicated in pathogenesis. Despite numerous studies, the functions of most PE_PGRS proteins in the pathogenesis of mycobacterium infections remain unclear. PE_PGRS45 (Rv2615c) is only found in pathogenic mycobacteria. In this study, we successfully constructed a recombinant Mycobacterium smegmatis (M. smegmatis) strain which heterologously expresses the PE_PGRS45 protein. We found that overexpression of this cell wall-associated protein enhanced bacterial viability under stress in vitro and cell survival in macrophages. MS_PE_PGRS45 decreased the secretion of pro-inflammatory cytokines such as IL-1β, IL-6, IL-12p40, and TNF-α. We also found that MS_PE_PGRS45 increased the expression of the anti-inflammatory cytokine IL-10 and altered macrophage-mediated immune responses. Furthermore, PE_PGRS45 enhanced the survival rate of M. smegmatis in macrophages by inhibiting cell apoptosis. Collectively, our findings show that PE_PGRS45 is a virulent factor actively involved in the interaction with the host macrophage.
Mycorrhizal Fungal Diversity Associated with Six Understudied Ectomycorrhizal Trees in the Republic of Korea
Ki Hyeong Park , Seung-Yoon Oh , Yoonhee Cho , Chang Wan Seo , Ji Seon Kim , Shinnam Yoo , Jisun Lim , Chang Sun Kim , Young Woon Lim
J. Microbiol. 2023;61(8):729-739.   Published online September 4, 2023
DOI: https://doi.org/10.1007/s12275-023-00073-1
  • 16 View
  • 0 Download
AbstractAbstract
Mycorrhizal fungi are key components of forest ecosystems and play essential roles in host health. The host specificity of mycorrhizal fungi is variable and the mycorrhizal fungi composition for the dominant tree species is largely known but remains unknown for the less common tree species. In this study, we collected soil samples from the roots of six understudied ectomycorrhizal tree species from a preserved natural park in the Republic of Korea over four seasons to investigate the host specificity of mycorrhizal fungi in multiple tree species, considering the abiotic factors. We evaluated the mycorrhizal fungal composition in each tree species using a metabarcoding approach. Our results revealed that each host tree species harbored unique mycorrhizal communities, despite close localization. Most mycorrhizal taxa belonged to ectomycorrhizal fungi, but a small proportion of ericoid mycorrhizal fungi and arbuscular mycorrhizal fungi were also detected. While common mycorrhizal fungi were shared between the plant species at the genus or higher taxonomic level, we found high host specificity at the species/OTU (operational taxonomic unit) level. Moreover, the effects of the seasons and soil properties on the mycorrhizal communities differed by tree species. Our results indicate that mycorrhizal fungi feature host-specificity at lower taxonomic levels.
Chemokine CCL6 Plays Key Role in the Inhibitory Effect of Vitamin A on Norovirus Infection
Heetae Lee , Giljae Lee , You-Hee Cho , Youngcheon Song , GwangPyo Ko
J. Microbiol. 2023;61(5):579-587.   Published online May 26, 2023
DOI: https://doi.org/10.1007/s12275-023-00047-3
  • 18 View
  • 0 Download
AbstractAbstract
Norovirus (NoV) is the most common viral cause of acute gastroenteritis worldwide. Vitamin A has demonstrated the potential to protect against gastrointestinal infections. However, the effects of vitamin A on human norovirus (HuNoV) infections remain poorly understood. This study aimed to investigate how vitamin A administration affects NoV replication. We demonstrated that treatment with retinol or retinoic acid (RA) inhibited NoV replication in vitro based on their effects on HuNoV replicon-bearing cells and murine norovirus-1 (MNV-1) replication in murine cells. MNV replication in vitro showed significant transcriptomic changes, which were partially reversed by retinol treatment. RNAi knockdown of CCL6, a chemokine gene that was downregulated by MNV infection but upregulated by retinol administration, resulted in increased MNV replication in vitro. This suggested a role of CCL6 in the host response to MNV infections. Similar gene expression patterns were observed in the murine intestine after oral administration of RA and/or MNV-1.CW1. CCL6 directly decreased HuNoV replication in HG23 cells, and might indirectly regulate the immune response against NoV infection. Finally, relative replication levels of MNV-1.CW1 and MNV-1.CR6 were significantly increased in CCL6 knockout RAW 264.7 cells. This study is the first to comprehensively profile transcriptomes in response to NoV infection and vitamin A treatment in vitro, and thus may provide new insights into dietary prophylaxis and NoV infections.
Epidemiological Characteristics of Norovirus Outbreaks in Shenyang from 2017 to 2021
Ying Qi , Xinxin Dong , Xiaowei Cheng , Han Xu , Jin Wang , Bing Wang , Ye Chen , Baijun Sun , Linlin Zhang , Yan Yao
J. Microbiol. 2023;61(4):471-478.   Published online March 27, 2023
DOI: https://doi.org/10.1007/s12275-023-00033-9
  • 18 View
  • 0 Download
  • 4 Citations
AbstractAbstract
Norovirus is one of the leading causes of acute gastroenteritis outbreaks worldwide. This study aimed to identify the epidemiological characteristics of norovirus outbreaks and to provide evidence for public health entities. Specimens and epidemiological survey data were collected to determine if there were differences in the attack rate of norovirus in terms of the year, season, transmission route, exposure setting, and region and to determine whether there were relationships between the reporting interval, the number of illnesses in a single outbreak and the duration of the outbreak. Norovirus outbreaks were reported throughout the year, with seasonal characteristics (i.e., high rates in spring and winter). Among all regions in Shenyang with the exception of Huanggu and Liaozhong, norovirus outbreaks had been reported, and the primary genotype was GII.2[P16]. Vomiting was the most common symptom. The main places of occurrence were childcare institutions and schools. The person-to-person route was the main transmission route. The median duration of norovirus was 3 days (IQR [interquartile range]: 2–6 days), the median reporting interval was 2 days (IQR: 1–4 days), the median number of illnesses in a single outbreak was 16 (IQR: 10–25); there was a positive correlation between these parameters. Norovirus surveillance and genotyping studies still need to be further strengthened to increase knowledge regarding the pathogens and their variant characteristics, to better characterize the patterns of norovirus outbreaks and to provide information for outbreak prevention. Norovirus outbreaks should be detected, reported and handled early. Public health entities and the government should develop corresponding measures for different seasons, transmission routes, exposure settings, and regions.
CXCL12/CXCR4 Axis is Involved in the Recruitment of NK Cells by HMGB1 Contributing to Persistent Airway Inflammation and AHR During the Late Stage of RSV Infection
Sisi Chen , Wei Tang , Guangyuan Yu , Zhengzhen Tang , Enmei Liu
J. Microbiol. 2023;61(4):461-469.   Published online February 13, 2023
DOI: https://doi.org/10.1007/s12275-023-00018-8
  • 18 View
  • 0 Download
  • 4 Citations
AbstractAbstract
We previously showed that both high-mobility group box-1 (HMGB1) and natural killer (NK) cells contribute to respiratory syncytial virus (RSV)-induced persistent airway inflammation and airway hyperresponsiveness (AHR). Meanwhile, Chemokine (C-X-C motif) ligand 12 (CXCL12) and its specific receptor (chemokine receptor 4, CXCR4) play important roles in recruitment of immune cells. CXCL12 has been reported to form a complex with HMGB1 that binds to CXCR4 and increases inflammatory cell migration. The relationship between HMGB1, NK cells and chemokines in RSV-infected model remains unclear. An anti-HMGB1 neutralizing antibody and inhibitor of CXCR4 (AMD3100) was administered to observe changes of NK cells and airway disorders in nude mice and BALB/c mice. Results showed that the mRNA expression and protein levels of HMGB1 were elevated in late stage of RSV infection and persistent airway inflammation and AHR were diminished after administration of anti-HMGB1 antibodies, with an associated significant decrease in CXCR4+ NK cells. In addition, CXCL12 and CXCR4 were reduced after HMGB1 blockade. Treatment with AMD3100 significantly suppressed the recruitment of NK cells and alleviated the airway disorders. Thus, CXCL12/CXCR4 axis is involved in the recruitment of NK cells by HMGB1, contributing to persistent airway inflammation and AHR during the late stage of RSV infection.
Effects of Continuous Straw Returning on Soil Functional Microorganisms and Microbial Communities
Yunpeng Guan , Meikang Wu , Songhao Che , Shuai Yuan , Xue Yang , Siyuan Li , Ping Tian , Lei Wu , Meiying Yang , Zhihai Wu
J. Microbiol. 2023;61(1):49-62.   Published online January 26, 2023
DOI: https://doi.org/10.1007/s12275-022-00004-6
  • 18 View
  • 0 Download
  • 9 Citations
AbstractAbstract
This study examined the changes in soil enzymatic activity, microbial carbon source metabolic diversity, and straw decomposition rates in paddy fields treated with 1, 2, or 3 years of straw returning (SR1–SR3). The soil’s ability to decompose straw and cellulolytic bacteria increased with the number of treatment years (1: 31.9% vs. 2: 43.9% vs. 3: 51.9%, P < 0.05). The numbers of Azotobacter, Nitrobacteria, cellulolytic bacteria, and inorganic phosphate bacteria increased progressively with the numbers of straw returning years. Cellulolytic bacteria and inorganic phosphate bacteria were significantly positively correlated with the decomposition rate (r = 0.783 and r = 0.375, P < 0.05). Based on 16S sequencing results, straw returning improved the microbial diversity of paddy soils by increasing unclassified bacteria and keeping dominant soil microorganism populations unchanged. The relative importance of individual microbial taxa was compared using random forest models. Proteobacteria, ammoniating bacteria, and potassium dissolving bacteria contributed to peroxidase activity. The significant contributors to phosphate monoesterase were Acidobacteriota, Desulfobacterota, ammoniating bacteria, cellulolytic bacteria, and potassium-dissolving bacteria. Proteobacteria, ammoniating bacteria, cellulolytic bacteria, and potassium-dissolving bacteria contributed to urease activity. Desulfobacterota, ammoniating bacteria, cellulolytic bacteria, and potassium-dissolving bacteria contributed to the neutral invertase activity. In conclusion, soil microbial community structure and function were affected within 2 years of straw returning, which was driven by the combined effects of soil organic carbon, available nitrogen, available potassium, and pH. With elapsing straw returning years, soil properties interacted with soil microbial communities, and a healthier soil micro-ecological environment would form.
Inhibition of KIF20A suppresses the replication of influenza A virus by inhibiting viral entry
Hoyeon Jeon , Younghyun Lim , In-Gu Lee , Dong-In Kim , Keun Pil Kim , So-Hee Hong , Jeongkyu Kim , Youn-Sang Jung , Young-Jin Seo
J. Microbiol. 2022;60(11):1113-1121.   Published online November 1, 2022
DOI: https://doi.org/10.1007/s12275-022-2436-x
  • 15 View
  • 0 Download
AbstractAbstract
The influenza A virus (IAV) has caused several pandemics, and therefore there are many ongoing efforts to identify novel antiviral therapeutic strategies including vaccines and antiviral drugs. However, influenza viruses continuously undergo antigenic drift and shift, resulting in the emergence of mutated viruses. In turn, this decreases the efficiency of existing vaccines and antiviral drugs to control IAV infection. Therefore, this study sought to identify alternative therapeutic strategies targeting host cell factors rather than viruses to avoid infection by mutated viruses. Particularly, we investigated the role of KIF20A that is one of kinesin superfamily proteins in the replication of IAV. The KIF20A increased viral protein levels in IAV-infected cells by regulating the initial entry stage during viral infection. Furthermore, the KIF20A inhibitor significantly suppressed viral replication, which protected mice from morbidity and mortality. Therefore, our findings demonstrated that KIF20A is highly involved in the viral replication process and viral propagation both in vitro and in vivo, and could thus be used as a target for the development of novel antiviral drugs.

Journal of Microbiology : Journal of Microbiology
TOP