Search
- Page Path
-
HOME
> Search
Journal Article
- In Silico Intensive Analysis for the E4 Gene Evolution of Human Adenovirus Species D.
-
Chanhee Lee, Anyeseu Park, Jeong Yoon Lee
-
J. Microbiol. 2024;62(5):409-418. Published online April 30, 2024
-
DOI: https://doi.org/10.1007/s12275-024-00132-1
-
-
Abstract
- Adenovirus (Ad) is a ubiquitous pathogen capable of infecting a wide range of animals and humans. Human Adenovirus (HAdV) can cause severe infection, particularly in individuals with compromised immune systems. To date, over 110 types of HAdV have been classified into seven species from A to G, with the majority belonging to the human adenovirus species D (HAdV-D). In the HAdV-D, the most significant factor for the creation of new adenovirus types is homologous recombination between viral genes involved in determining the virus tropism or evading immune system of host cells. The E4 gene, consisting of seven Open Reading Frames (ORFs), plays a role in both the regulation of host cell metabolism and the replication of viral genes. Despite long-term studies, the function of each ORF remains unclear. Based on our updated information, ORF2, ORF3, and ORF4 have been identified as regions with relatively high mutations compared to other ORFs in the E4 gene, through the use of in silico comparative analysis. Additionally, we managed to visualize high mutation sections, previously undetectable at the DNA level, through a powerful amino acid sequence analysis tool known as proteotyping. Our research has revealed the involvement of the E4 gene in the evolution of human adenovirus, and has established accurate sequence information of the E4 gene, laying the groundwork for further research.
- Formation of humus-bound residues in the course of BTX biodegradation in soil
-
Song , Hong Gyu
-
J. Microbiol. 1997;35(1):47-52.
-
-
-
Abstract
- To examine whether the xylene component of BTX (benzene, toluene, xylene) mixture is cometabolized and residues are produced in soil, ¹⁴C-labeled-0-xylene was added to sandy loam in combination with unlabeled benzene and toluene. After 4 weeks of incubation in a sealed system connected to an oxygen reservoir, 55.1% of the radiocarbon was converted to ¹⁴CO₂, 3.0% was to 95.8% radiocarbon recovery. Biomass incorporation of o-xylene radiocarbon which was detected by fumigation/extraction was usually low (5.6%), but 32.1% radiocarbon became associated with soil humus. Most of the numus-bound radiocarbon was found in humin fraction. In addition to o-xylene, p-xylene and toluene also showed similar results. The evidence shows that some of their reactive methylcatechol biodegradation intermediates attach to the humic metrix in soil in preference to mineralization and biomass incorporation.
TOP