Research Support, Non-U.S. Gov't
- Characterization of Recombinant β-Glucosidase from Arthrobacter chlorophenolicus and Biotransformation of Ginsenosides Rb1, Rb2, Rc, and Rd
-
Myung Keun Park , Chang-Hao Cui , Sung Chul Park , Seul-Ki Park , Jin-Kwang Kim , Mi-Sun Jung , Suk-Chae Jung , Mi-Sun Jung , Suk-Chae Jung , Sun-Chang Kim , Wan-Taek Im
-
J. Microbiol. 2014;52(5):399-406. Published online May 9, 2014
-
DOI: https://doi.org/10.1007/s12275-014-3601-7
-
-
46
View
-
0
Download
-
10
Crossref
-
Abstract
-
The focus of this study was the cloning, expression, and characterization of recombinant ginsenoside hydrolyzing β-glucosidase from Arthrobacter chlorophenolicus with an ultimate objective to more efficiently bio-transform ginse-nosides. The gene bglAch, consisting of 1,260 bp (419 amino acid residues) was cloned and the recombinant enzyme, over-expressed in Escherichia coli BL21 (DE3), was characterized. The GST-fused BglAch was purified using GST·Bind agarose resin and characterized. Under optimal conditions (pH 6.0 and 37°C) BglAch hydrolyzed the outer glucose and arabino-pyranose moieties of ginsenosides Rb1 and Rb2 at the C20 position of the aglycone into ginsenoside Rd. This was fol-lowed by hydrolysis into F2 of the outer glucose moiety of ginsenoside Rd at the C3 position of the aglycone. Additio-nally, BglAch more slowly transformed Rc to F2 via C-Mc1 (compared to hydrolysis of Rb1 or Rb2). These results in-dicate that the recombinant BglAch could be useful for the production of ginsenoside F2 for use in the pharmaceutical and cosmetic industries.
-
Citations
Citations to this article as recorded by

- Production and pharmaceutical research of minor saponins in Panax notoginseng (Sanqi): Current status and future prospects
Hui Zhang, Jianxiu Li, Mengxue Diao, Jianbin Li, Nengzhong Xie
Phytochemistry.2024; 223: 114099. CrossRef - Microbial production and applications of β-glucosidase-A review
Wenqi Yang, Yaowu Su, Rubing Wang, Huanyu Zhang, Hongyan Jing, Jie Meng, Guoqi Zhang, Luqi Huang, Lanping Guo, Juan Wang, Wenyuan Gao
International Journal of Biological Macromolecules.2024; 256: 127915. CrossRef - Progress in the Conversion of Ginsenoside Rb1 into Minor Ginsenosides Using β-Glucosidases
Hongrong Zhu, Rui Zhang, Zunxi Huang, Junpei Zhou
Foods.2023; 12(2): 397. CrossRef - Enzymatic biotransformation of ginsenoside Rb1 by recombinant β-glucosidase of bacterial isolates from Indonesia
Almando Geraldi, Ni'matuzahroh, Fatimah, Chang-Hao Cui, Thi Thuy Nguyen, Sun Chang Kim
Biocatalysis and Agricultural Biotechnology.2020; 23: 101449. CrossRef - Characterization of a Novel Ginsenoside MT1 Produced by an Enzymatic Transrhamnosylation of Protopanaxatriol-Type Ginsenosides Re
Byeong-Min Jeon, Jong-In Baek, Min-Sung Kim, Sun-Chang Kim, Chang-hao Cui
Biomolecules.2020; 10(4): 525. CrossRef - In silico Approach to Elucidate Factors Associated with GH1 β-Glucosidase Thermostability
Amer Ahmed, Ayesha Sumreen, Aasia Bibi, Faiz ul Hassan Nasim, Kashfa Batool
Journal of Pure and Applied Microbiology.2019; 13(4): 1953. CrossRef - A literature update elucidating production of Panax ginsenosides with a special focus on strategies enriching the anti-neoplastic minor ginsenosides in ginseng preparations
Tanya Biswas, A. K. Mathur, Archana Mathur
Applied Microbiology and Biotechnology.2017; 101(10): 4009. CrossRef - Classification of glycosidases that hydrolyze the specific positions and types of sugar moieties in ginsenosides
Kyung-Chul Shin, Deok-Kun Oh
Critical Reviews in Biotechnology.2016; 36(6): 1036. CrossRef - Insight into a novel β-1,4-glucosidase from Streptomyces griseorubens JSD-1
H.-W. Feng, Y.-E. Zhi, Y.-J. Sun, L.-R. Xu, L.-M. Wang, X.-J. Zhan, P. Zhou
Applied Biochemistry and Microbiology.2016; 52(4): 371. CrossRef - Overexpression and characterization of a glycoside hydrolase family 1 enzyme from Cellulosimicrobium cellulans sp. 21 and its application for minor ginsenosides production
Ye Yuan, Yanbo Hu, Chenxing Hu, Jiayi Leng, Honglei Chen, Xuesong Zhao, Juan Gao, Yifa Zhou
Journal of Molecular Catalysis B: Enzymatic.2015; 120: 60. CrossRef