Autophagy is an important cellular homeostatic mechanism
for recycling of degradative proteins and damaged organelles.
Autophagy has been shown to play an important role in cellular
responses to bacteria and bacterial replication. However,
the role of autophagy in Mycoplasma hyopneumoniae infection
and the pathogenic mechanism is not well characterized.
In this study, we showed that M. hyopneumoniae infection
significantly increases the number of autophagic vacuoles in
host cells. Further, we found significantly enhanced expressions
of autophagy marker proteins (LC3-II, ATG5, and
Beclin 1) in M. hyopneumoniae-infected cells. Moreover, immunofluorescence
analysis showed colocalization of P97 protein
with LC3 during M. hyopneumoniae infection. Interestingly,
autophagic flux marker, p62, accumulated with the induction
of infection. Conversely, the levels of p62 and LC3-II
were decreased after treatment with 3-MA, inhibiting the
formation of autophagosomes, during infection. In addition,
accumulation of autophagosomes promoted the expression
of P97 protein and the survival of M. hyopneumoniae in PK-
15 cells, as the replication of M. hyopneumoniae was downregulated
by adding 3-MA. Collectively, these findings provide
strong evidence that M. hyopneumoniae induces incomplete
autophagy, which in turn enhances its reproduction in
host cells. These findings provide novel insights into the interaction
of M. hyopneumoniae and host.
Citations
Citations to this article as recorded by
Research Progress on Immune Evasion of Mycoplasma hyopneumoniae Bin Jiang, Ying Zhang, Gaojian Li, Yanping Quan, Jianhong Shu, Huapeng Feng, Yulong He Microorganisms.2024; 12(7): 1439. CrossRef
The Role of Pyroptosis and Autophagy in Ischemia Reperfusion Injury Huijie Zhao, Yihan Yang, Xinya Si, Huiyang Liu, Honggang Wang Biomolecules.2022; 12(7): 1010. CrossRef
Mycoplasma bovis inhibits autophagy in bovine mammary epithelial cells via a PTEN/PI3K-Akt-mTOR-dependent pathway Maolin Xu, Yang Liu, Tuerdi Mayinuer, Yushan Lin, Yue Wang, Jian Gao, Dong Wang, John P. Kastelic, Bo Han Frontiers in Microbiology.2022;[Epub] CrossRef
Incomplete autophagy promotes the proliferation of Mycoplasma hyopneumoniae through the JNK and Akt pathways in porcine alveolar macrophages Yukang Wen, Zhengkun Chen, Yaqin Tian, Mei Yang, Qingshuang Dong, Yujiao Yang, Honglei Ding Veterinary Research.2022;[Epub] CrossRef
Human papillomaviruses (HPVs) are known to utilize the
down-regulation of epithelial (E)-cadherin, a major component
of adherens junctions of keratinocytes, to evade host
immune surveillance in high-risk group. However, the effects
of HPV on the function of E-cadherin in low-risk groups remain
unknown. We investigated whether type 2 HPV (HPV-
2) E7 could induce alterations in E-cadherin expression in
transiently transfected keratinocytes and cell lines expressing
HPV-2 E7. To examine the expression pattern of E-cadherin
in cutaneous warts and normal skin samples, immunohistochemical
analysis was performed. Quantitative real-time
polymerase chain reactions, luciferase assays, western blot,
immunocytochemistry, and electron microscopy were used
to evaluate the mRNA and protein expression levels of Ecadherin
in normal human epidermal keratinocytes transfected
with HPV-2 E7 plasmid DNA or E7-specific siRNA
and in E7-expressing cell lines. E-cadherin expression levels
in HPV-2 positive cutaneous warts were significantly decreased
compared to those in normal skin (p < 0.05). Similarly,
the mRNA and protein expression levels of E-cadherin
in E7 transiently transfected cells were significantly decreased
compared to those in empty vector-transfected cells. The decreases
were restored by transfection with E7-specific siRNA
(p < 0.05). Likewise, cell lines expressing E7 showed a decreased
expression of E-cadherin. When the cells were cultured
in low attachment plates, cell-to-cell aggregation was
inhibited. Taken together, our data suggest that HPV-2 E7,
the causative agent of cutaneous warts, could mediate the
transcriptional repression of E-cadherin.
Citations
Citations to this article as recorded by
The NLRP3 inflammasome in viral infection (Review) Qiaoli Zheng, Chunting Hua, Qichang Liang, Hao Cheng Molecular Medicine Reports.2023;[Epub] CrossRef