Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
2 "multidrug-resistant bacteria"
Filter
Filter
Article category
Keywords
Publication year
Journal Articles
Incomplete autophagy promotes the replication of Mycoplasma hyopneumoniae
Zhaodi Wang† , Yukang Wen† , Bingqian Zhou , Yaqin Tian , Yaru Ning , Honglei Ding
J. Microbiol. 2021;59(8):782-792.   Published online July 5, 2021
DOI: https://doi.org/10.1007/s12275-021-1232-3
  • 47 View
  • 0 Download
  • 7 Web of Science
  • 4 Crossref
AbstractAbstract
Autophagy is an important cellular homeostatic mechanism for recycling of degradative proteins and damaged organelles. Autophagy has been shown to play an important role in cellular responses to bacteria and bacterial replication. However, the role of autophagy in Mycoplasma hyopneumoniae infection and the pathogenic mechanism is not well characterized. In this study, we showed that M. hyopneumoniae infection significantly increases the number of autophagic vacuoles in host cells. Further, we found significantly enhanced expressions of autophagy marker proteins (LC3-II, ATG5, and Beclin 1) in M. hyopneumoniae-infected cells. Moreover, immunofluorescence analysis showed colocalization of P97 protein with LC3 during M. hyopneumoniae infection. Interestingly, autophagic flux marker, p62, accumulated with the induction of infection. Conversely, the levels of p62 and LC3-II were decreased after treatment with 3-MA, inhibiting the formation of autophagosomes, during infection. In addition, accumulation of autophagosomes promoted the expression of P97 protein and the survival of M. hyopneumoniae in PK- 15 cells, as the replication of M. hyopneumoniae was downregulated by adding 3-MA. Collectively, these findings provide strong evidence that M. hyopneumoniae induces incomplete autophagy, which in turn enhances its reproduction in host cells. These findings provide novel insights into the interaction of M. hyopneumoniae and host.

Citations

Citations to this article as recorded by  
  • Research Progress on Immune Evasion of Mycoplasma hyopneumoniae
    Bin Jiang, Ying Zhang, Gaojian Li, Yanping Quan, Jianhong Shu, Huapeng Feng, Yulong He
    Microorganisms.2024; 12(7): 1439.     CrossRef
  • The Role of Pyroptosis and Autophagy in Ischemia Reperfusion Injury
    Huijie Zhao, Yihan Yang, Xinya Si, Huiyang Liu, Honggang Wang
    Biomolecules.2022; 12(7): 1010.     CrossRef
  • Mycoplasma bovis inhibits autophagy in bovine mammary epithelial cells via a PTEN/PI3K-Akt-mTOR-dependent pathway
    Maolin Xu, Yang Liu, Tuerdi Mayinuer, Yushan Lin, Yue Wang, Jian Gao, Dong Wang, John P. Kastelic, Bo Han
    Frontiers in Microbiology.2022;[Epub]     CrossRef
  • Incomplete autophagy promotes the proliferation of Mycoplasma hyopneumoniae through the JNK and Akt pathways in porcine alveolar macrophages
    Yukang Wen, Zhengkun Chen, Yaqin Tian, Mei Yang, Qingshuang Dong, Yujiao Yang, Honglei Ding
    Veterinary Research.2022;[Epub]     CrossRef
Type 2 human papillomavirus E7 attenuates E-cadherin expression in human keratinocytes
Ji Young Song , Young Min Park , Soon Yong Choi
J. Microbiol. 2021;59(6):616-625.   Published online March 29, 2021
DOI: https://doi.org/10.1007/s12275-021-0690-y
  • 49 View
  • 0 Download
  • 1 Web of Science
  • 1 Crossref
AbstractAbstract
Human papillomaviruses (HPVs) are known to utilize the down-regulation of epithelial (E)-cadherin, a major component of adherens junctions of keratinocytes, to evade host immune surveillance in high-risk group. However, the effects of HPV on the function of E-cadherin in low-risk groups remain unknown. We investigated whether type 2 HPV (HPV- 2) E7 could induce alterations in E-cadherin expression in transiently transfected keratinocytes and cell lines expressing HPV-2 E7. To examine the expression pattern of E-cadherin in cutaneous warts and normal skin samples, immunohistochemical analysis was performed. Quantitative real-time polymerase chain reactions, luciferase assays, western blot, immunocytochemistry, and electron microscopy were used to evaluate the mRNA and protein expression levels of Ecadherin in normal human epidermal keratinocytes transfected with HPV-2 E7 plasmid DNA or E7-specific siRNA and in E7-expressing cell lines. E-cadherin expression levels in HPV-2 positive cutaneous warts were significantly decreased compared to those in normal skin (p < 0.05). Similarly, the mRNA and protein expression levels of E-cadherin in E7 transiently transfected cells were significantly decreased compared to those in empty vector-transfected cells. The decreases were restored by transfection with E7-specific siRNA (p < 0.05). Likewise, cell lines expressing E7 showed a decreased expression of E-cadherin. When the cells were cultured in low attachment plates, cell-to-cell aggregation was inhibited. Taken together, our data suggest that HPV-2 E7, the causative agent of cutaneous warts, could mediate the transcriptional repression of E-cadherin.

Citations

Citations to this article as recorded by  
  • The NLRP3 inflammasome in viral infection (Review)
    Qiaoli Zheng, Chunting Hua, Qichang Liang, Hao Cheng
    Molecular Medicine Reports.2023;[Epub]     CrossRef

Journal of Microbiology : Journal of Microbiology
TOP