Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
14 "multiplex"
Filter
Filter
Article category
Keywords
Publication year
Journal Articles
Development and validation of multiplex real-time PCR assays for rapid detection of cytomegalovirus, Epstein-Barr virus, and polyomavirus BK in whole blood from transplant candidates
Kyung-Ah Hwang , Ji Hoon Ahn , Jae-Hwan Nam
J. Microbiol. 2018;56(8):593-599.   Published online July 25, 2018
DOI: https://doi.org/10.1007/s12275-018-8273-2
  • 12 View
  • 0 Download
  • 6 Citations
AbstractAbstract
Transplant recipients are more susceptible to bacterial and viral infections. Cytomegalovirus (CMV), Epstein-Barr virus (EBV), and polyomavirus BK (BK) are risk factors for graft dysfunction. All three of them are latent viruses that can cause serious disease in immunocompromised patients. Mainly qualitative PCR tests are required for diagnosis and quantitative monitoring, which are used to follow the response to transplantation. We developed a multiplex real-time PCR (qPCR)
method
to detect these viruses during blood screenings of transplant recipients. We also validated analytical and clinical performance tests using the developed multiplex qPCR. The limit of detection (LOD) was 100, 125, and 183 copies/ml for CMV, EBV, and BK, respectively. These results had high linearity (R2 = 0.997) and reproducibility (CV range, 0.95– 2.38%, 0.52–3.32%, and 0.31–2.45%, respectively). Among 183 samples, we detected 8 samples that were positive for CMV, while only 6 were positive for EBV, and 3 were positive for BK. Therefore, the viral infection prevalence in transplant candidates was 4.40% for CMV, 3.29% for EBV, and 1.64% for BK. This multiplex qPCR method should be used widely for diagnosing and monitoring latent viral infections in transplant recipients.
Performance of nested multiplex PCR assay targeting MTP40 and IS6110 gene sequences for the diagnosis of tubercular lymphadenitis
Pallavi Sinha , Pradyot Prakash , Shashikant C.U. Patne , Shampa Anupurba , Sweety Gupta , G. N. Srivastava
J. Microbiol. 2017;55(1):63-67.   Published online December 30, 2016
DOI: https://doi.org/10.1007/s12275-017-6127-y
  • 14 View
  • 0 Download
  • 5 Citations
AbstractAbstract
The conventional methods for diagnosis of tubercular lymphadenitis (TBLN) such as - fine needle aspiration cytology, Ziehl-Neelsen staining and culture have limitations of low sensitivity and/or specificity. So, it becomes essential to develop a rapid, sensitive, and specific method for an early diagnosis of TBLN. Therefore, the present study was conducted to evaluate nested multiplex polymerase chain reaction (nMPCR) targeting MTP40 and IS6110 gene sequences of Mycobacterium tuberculosis and Mycobacterium tuberculosis complex, respectively in 48 successive patients of TBLN and 20 random patients with non-tubercular lymph node lesions. Out of the 48 cases of TBLN, 14 (29.2%) were found to be positive by Ziehl-Neelsen staining, 15 (31.2%) were positive by culture and 43 (89.6%) cases were positive after first round of PCR while 48 (100%) cases were positive by nMPCR assay. The sensitivity and specificity of nMPCR was found to be 100% for the diagnosis of TBLN. The results thus obtained indicate that nMPCR assay is a highly sensitive and specific tool for the diagnosis of TBLN.
Research Support, Non-U.S. Gov'ts
NOTE] Isolation and Characterization of Histamine-Producing Bacteria from Fermented Fish Products
Jin Seok Moon , So-Young Kim , Kyung-Ju Cho , Seung-Joon Yang , Gun-Mook Yoon , Hyun-Ju Eom , Nam Soo Han
J. Microbiol. 2013;51(6):881-885.   Published online December 19, 2013
DOI: https://doi.org/10.1007/s12275-013-3333-0
  • 6 View
  • 0 Download
  • 13 Citations
AbstractAbstract
Histamine is mainly produced by microorganisms that are found in fermented foods, and is frequently involved in food poisoning. Two histamine-producing bacteria were isolated from fermented fish products, anchovy sauce, and sand lance sauce by using a histidine decarboxylating medium. The species were identified as Bacillus licheniformis A7 and B. coagulans SL5. Multiplex PCR analysis showed the presence of the conserved histidine decarboxylase (hdc) gene in the chromosome of these bacteria. B. licheniformis A7 and B. coagulans SL5 produced the maximum amount of histamine (22.3±3.5 and 15.1±1.5 mg/L, respectively). As such, they were determined to be potential histamine-producing bacteria among the tested cultures.
Simultaneous Detection of Waterborne Viruses by Multiplex Real-Time PCR
Lae-Hyung Kang , Se-hwan Oh , Jeong-Woong Park , Yu-Jung Won , Sangryeol Ryu , Soon-Young Paik
J. Microbiol. 2013;51(5):671-675.   Published online September 14, 2013
DOI: https://doi.org/10.1007/s12275-013-3199-1
  • 8 View
  • 0 Download
  • 7 Citations
AbstractAbstract
Norovirus, Rotavirus group A, the Hepatitis A virus, and Coxsackievirus are all common causes of gastroenteritis. Conventional diagnoses of these causative agents are based on antigen detection and electron microscopy. To improve the diagnostic potential for viral gastroenteritis, internally controlled multiplex real-time polymerase chain reaction (PCR) methods have been recently developed. In this study, individual real-time PCRs were developed and optimized for specific detections of Norovirus genogroup I, Norovirus genogroup II, Rotavirus group A, the Hepatitis A virus, and Coxsackievirus group B1. Subsequently, individual PCRs were combined with multiplex PCR reactions. In general, multiplex real-time PCR assays showed comparable sensitivities and specificities with individual assays. A retrospective clinical evaluation showed increased pathogen detection in 29% of samples using conventional PCR methods. Prospective clinical evaluations were detected in 123 of the 227 (54%) total samples used in the multiplex realtime PCR analysis. The Norovirus genogroup II was found most frequently (23%), followed by Rotavirus (20%), the Hepatitis A virus (4.5%), Coxsackievirus (3.5%), and Norovirus genogroup I (2.6%). Internally controlled multiplex real-time PCR assays for the simultaneous detection of Rotavirus, Coxsackievirus group B, the Hepatitis A virus, and Norovirus genogroups I and II showed significant improvement in the diagnosis of viral gastroenteritis.
Prevalence of Amino Acid Changes in the yvqF, vraSR, graSR, and tcaRAB Genes from Vancomycin Intermediate Resistant Staphylococcus aureus
Jae Il Yoo , Jung Wook Kim , Gi Su Kang , Hwa Su Kim , Jung Sik Yoo , Yeong Seon Lee
J. Microbiol. 2013;51(2):160-165.   Published online April 27, 2013
DOI: https://doi.org/10.1007/s12275-013-3088-7
  • 13 View
  • 0 Download
  • 26 Citations
AbstractAbstract
Vancomycin intermediate Staphylococcus aureus (VISA) strains are increasingly prevalent in the hospital setting, and are of major concern in the treatment of methicillin-resistant S. aureus infections. Multiple mutations in vancomycinsusceptible S. aureus (VSSA) strains likely led to the emergence of VISA, and point mutations in the agr, orf1, yvqF, vraSR, graSR, and tcaRAB genes of VISA strains have been shown to contribute to glycopeptide resistance. Therefore, we investigated point mutations in these genes from 87 VISA and 27 VSSA clinical strains isolated from Korean hospitals. All strains were assigned an agr type (I, II, or III) on the basis of multiplex PCR, with the majority of VISA strains belonging to agr groups I and II. Sequencing revealed amino acid changes in vraS from VISA strains which were not present in the VSSA strains. The E59D substitution in the vraR gene occurred in 36.3% of VSSA/agrI and 92.7% of VISA/agrI strains, suggesting that this mutation associated with emergence of VISA/agrI strains. VISA strains were classified into 31 mutation patterns according to mutations in the yvqF, vraSR, graSR, and tcaRAB genes. In addition, the mutation patterns were correlated with agr and sequence type (ST). The most prevalent pattern included agr type I (ST 72) strains with E59D (vraR), L26F and T224I (graS), D148Q (graR), and L218P, R283H and G312D (tcaA) amino acid substitutions. The minimum inhibitory concentration (MIC) range of mutation pattern 5 toward oxacillin and imipenem was much lower than that of patterns 6 and 24. These results improve our understanding of emergence of VISA strains.
Detection of Representative Enteropathogenic Bacteria, Vibrio spp., Pathogenic Escherichia coli, Salmonella spp., Shigella spp., and Yersinia enterocolitica, Using a Virulence Factor Gene-Based Oligonucleotide Microarray§
Dong-Hun Kim , Bok-Kwon Lee , Yong-Dae Kim , Sung-Keun Rhee , Young-Chang Kim
J. Microbiol. 2010;48(5):682-688.   Published online November 3, 2010
DOI: https://doi.org/10.1007/s12275-010-0119-5
  • 7 View
  • 0 Download
  • 20 Citations
AbstractAbstract
Rapid identification of enteropathogenic bacteria in stool samples is critical for clinical diagnosis and antimicrobial therapy. In this study, we describe the development of an approach that couples multiplex PCR with hybridization to a DNA microarray, to allow the simultaneous detection of the 10 pathogens. The microarray was synthesized with 20-mer oligonucleotide probes that were designed to be specific for virulencefactor genes of each strain. The detection limit for genomic DNA from a single strain was approximately 10 fg. In the presence of heterogeneous non-target DNA, the detection sensitivity of the array decreased to approximately 100 fg. We did not observe any non-specific hybridization. In addition, we successfully used this oligonucleotide-based DNA microarray to identify the causative agents in clinical stool samples from patients with food-borne enteritis.
Isolation and Characterization of Biogenic Amine-Producing Bacteria in Fermented Soybean Pastes
Jin Seok Moon , Seung Kee Cho , Hwa Young Choi , Ji Eun Kim , So-Young Kim , Kyung-Ju Cho , Nam Soo Han
J. Microbiol. 2010;48(2):257-261.   Published online May 1, 2010
DOI: https://doi.org/10.1007/s12275-010-0040-y
  • 7 View
  • 0 Download
  • 20 Citations
AbstractAbstract
Biogenic amines (BAs) are produced primarily by microorganisms found in fermented foods and are often implicated in food poisoning. BA-producing bacteria found in fermented soybean pastes were isolated and characterized using a decarboxylating medium and multiplex PCR analysis. Two BA-producing bacteria were isolated from traditional soybean pastes: one was a histamine-producing Clostridium strain, and the other was a tyramine-producing Pseudomonas strain. The Clostridium strain was determined to be a potent histamine producer among the cultures tested. Synthesis of tyramine by Pseudomonas sp. T1 was observed for the first time in this study.
Rapid One Step Detection of Pathogenic Bacteria in Urine with Sexually Transmitted Disease (STD) and Prostatitis Patient by Multiplex PCR Assay (mPCR)
Sang Rok Lee , Ji Min Chung , Young Gon Kim
J. Microbiol. 2007;45(5):453-459.
DOI: https://doi.org/2590 [pii]
  • 17 View
  • 0 Download
AbstractAbstract
We developed a multiplex PCR (mPCR) assay to simultaneously detect Chlamydia trachomatis, Neisseria gonorrhoeae, Mycoplasma genitalium, Ureaplasma urealyticum, Corynebacterium spp. and seudomona aeruginosa. This method employs a single tube and multiple specific primers which yield 200, 281, 346, 423, 542, and 1,427 bp PCR products, respectively. All the PCR products were easily detected by agarose gel electrophoresis and were sequenced to confirm the specificity of the reactions. To test this method, DNA extracted from urine samples was collected from 96 sexually transmitted disease or prostatitis patients at a local hospital clinical center, and were subjected to the mPCR assay. The resulting amplicons were cloned and sequenced to exactly match the sequences of known pathogenic isolates. N. gonorrhoeae and Corynebacterium spp. were the most frequently observed pathogens found in the STDs and prostatitis patients, respectively. Unexpectedly, P. aeruginosa was also detected in some of the STD and prostatitis samples. More than one pathogen species was found in 10% and 80.7% of STD and prostatitis samples, respectively, indicating that STD and prostatitis patients may have other undiagnosed and associates. The sensitivity of the assay was determined by sing purified DNA from six pathogenic laboratory strains and revealed that this technique could detect pathogenic DNA at concentrations ranging from 0.018 to 1.899 pg/μl. Moreover, the specificities of this assay were found to be highly efficient. Thus, this mPCR assay may be useful for the rapid diagnosis of causative infectious STDs and prostatitis. useful for the infectious STDs and prostatitis.
Rapid Detection of Virulence Factors of Aeromonas Isolated from a Trout Farm by Hexaplex-PCR
In-Young Nam , Kiseong Joh
J. Microbiol. 2007;45(4):297-304.
DOI: https://doi.org/2569 [pii]
  • 19 View
  • 0 Download
AbstractAbstract
The detection of virulence factors of Aeromonas is a key component in determining potential pathogenicity because these factors act multifunctionally and multifactorially. In this study water samples were collected from a trout farm on a seasonal basis, and diseased fish and Aeromonas species were isolated and identified. For rapid detection of six virulence factors of isolated Aeromonas, a hexaplex-polymerase chain reaction (hexaplex-PCR) assay was used. The detected virulence factors include aerolysin (aer), GCAT (gcat), serine protease (ser), nuclease (nuc) lipase (lip) and lateral flagella (laf). The dominant strain found in our isolates was Aeromonas sobria, and the dominant virulence factors were aer and nuc for all seasons. We confirmed that A. sobria and two of the virulence genes (aer and nuc) are related. We proposed a method by which one can identify the major strains of Aeromonas: A. hydrophila, A. sobria, A. caviae, and A. veronii, using hexaplex-PCR.
Validation Study
Differentiation of Lymphocystis Disease Virus Genotype by Multiplex PCR
Shin-Ichi Kitamura , Sung-Ju Jung , Myung-Joo Oh
J. Microbiol. 2006;44(2):248-253.
DOI: https://doi.org/2358 [pii]
  • 14 View
  • 0 Download
AbstractAbstract
Lymphocystis disease virus (LCDV) is the causative agent of lymphocystis disease. The viruses have been divided into three genotypes (genotype I for LCDV-1, II for Japanese flounder isolates, and III for rockfish isolates) on the basis of major capsid protein (MCP) gene sequences. In this study, we developed a multiplex PCR primer set in order to distinguish these genotypes. We also analyzed the MCP gene of a new LCDV isolate from the sea bass (SB98Yosu). Comparison of sequence identities between SB98Yosu and eight Japanese flounder isolates, revealed identity of more than 90.1% at nucleotide level and 96.5% at deduced amino acid level, respectively. Phylogenetic analyses based on the MCP gene showed that SB98Yosu belongs to genotype II, along with Japanese flounder isolates. Multiplex PCR based on the MCP gene allowed us to identify these genotypes in a simple and rapid manner, even in a sample that contained two genotypes, in this case genotypes II and III.
Research Support, Non-U.S. Gov't
Detection of Escherichia coli O157:H7, Salmonella spp.,Staphylococcus aureus and Listeria monocytogenes in Kimchi by Multiplex Polymerase Chain Reaction (mPCR)
Yeon Sun Park , Sang Rok Lee , Young Gon Kim
J. Microbiol. 2006;44(1):92-97.
DOI: https://doi.org/2331 [pii]
  • 12 View
  • 0 Download
AbstractAbstract
We developed an mPCR assay for the simultaneous detection, in one tube, of Escherichia coli O157:H7, Salmonella spp., Staphylococcus aureus and Listeria monocytogenes using species-specific primers. The mPCR employed the E. coli O157:H7 specific primer Stx2A, Salmonella spp. specific primer Its, S. aureus specific primer Cap8A-B and L. monocytogenes specific primer Hly. Amplification with these primers produced products of 553, 312, 405 and 210 bp, respectively. All PCR products were easily detected by agarose gel electrophoresis, and the sequences of the specific amplicons assessed. Potential pathogenic bacteria, in laboratory-prepared and four commercially available kimchi products, were using this mPCR assay, and the amplicons cloned and sequenced. The results correlated exactly with sequences derived for amplicons obtained during preliminry tests with known organisms. The sensitivity of the assay was determined for the purified pathogen DNAs from four strains. The mPCR detected pathogen DNA at concentrations ranging from approximately 0.45 to 0.05 pM/μl. Thus, this mPCR assay may allow for the rapid, reliable and cost-effective identification of four potentially pathogens present in the mixed bacterial communities of commercially available kimchi.
Detection of Lymphotropic Herpesviruses by Multiplex Polymerase Chain Reaction
Sang-Tae Park , Seung-Han Kim , Dong-Gun Lee , Jung-Hyun Choi , Wan-Shik Shin , Tai - Gyu Ki m , Soon-Young Paik , Chun-Choo Kim
J. Microbiol. 2001;39(3):226-228.
  • 12 View
  • 0 Download
AbstractAbstract
Human lymphotropic herpesvirus is known to be a major pathogen associated with various diseases in bone marrow transplantation (BMT) recipients. A multiplex nested-polymerase chain reaction (PCR) method was developed for the simultaneous detection of human lymphotropic herpesviruses, including Ebstein-Barr virus (EBV), cytomegalovirus (CMV), and human herpesvirus 6 variants A and B (HHV6-A, HHV6-B). To demonstrate the usefulness of multiplex PCR for the analysis of clinical samples, peripheral blood mononuclear cells and serum from BMT recipients were analysed. The results showed that a clear detection could be made between EBV, HCMV and HHV-6. This multiplex PCR assay is an efficient and cost-effective approach to the analysis of large numbers of samples to determine the epidemiological importance of EBV, HCMV and HHV-6.
Multiplex Polymerase Chain Reaction Assay for Simultaneous Detection of Candida albicans and Candida dubliniensis
Young-Hee Lim , Do-Hyun Lee
J. Microbiol. 2002;40(2):146-150.
  • 14 View
  • 0 Download
AbstractAbstract
A multiplex polymerase chain reaction (PCR) assay was developed for the identification of two Candida species-albicans and dubliniensis. Three sets of primers were selected from different genomic sequences to specifically amplify a 516 bp fragment within the top2 gene, specific for several species of the genus Candida (CCL primers); a 239 bp fragment within the [alpha]INT1 gene, specific for Candida albicans (CAL primers); and a 175 bp fragment within the ALSD1 gene, specific for Candida dubliniensis (CDL primers). Using the primers in conjunction (multiplex PCR), we were able to detect both C. albicans and C. dubliniensis and to differentiate between them. The detection limit of the PCR assay was approximately 10 cells per milliliter of saline. Thus, this multiplex PCR assay can be applied for differentiation of C. albicans and C. dubliniensis from clinical specimens.
Determination of Enteric Bacteria at Microbiologically Risky Points by Multiplex Polymerase Chain Reaction
Mahir Gulec , Bilal Bakir , Recai Ogur , Omer Faruk Tekbas
J. Microbiol. 2002;40(4):327-330.
  • 12 View
  • 0 Download
AbstractAbstract
The purpose of this research was to test multiplex polymerase chain reaction in investigating the microbiological quality of the risky surfaces in social living places of a military base where over 15 thousand people live together. In 22 samples of 99, there were no bacteria. Only four of the samples contained Shigella, and one of them contained Salmonella, but 77 of the samples contained thermotolerant coliform organisms. There was no statistically significant difference among the microbiological quality of different sites and different equipment surfaces (p>0.05).

Journal of Microbiology : Journal of Microbiology
TOP