Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
2 "mycobiota"
Filter
Filter
Article category
Keywords
Publication year
Journal Articles
Effects of Continuous Straw Returning on Soil Functional Microorganisms and Microbial Communities
Yunpeng Guan , Meikang Wu , Songhao Che , Shuai Yuan , Xue Yang , Siyuan Li , Ping Tian , Lei Wu , Meiying Yang , Zhihai Wu
J. Microbiol. 2023;61(1):49-62.   Published online January 26, 2023
DOI: https://doi.org/10.1007/s12275-022-00004-6
  • 19 View
  • 0 Download
  • 9 Citations
AbstractAbstract
This study examined the changes in soil enzymatic activity, microbial carbon source metabolic diversity, and straw decomposition rates in paddy fields treated with 1, 2, or 3 years of straw returning (SR1–SR3). The soil’s ability to decompose straw and cellulolytic bacteria increased with the number of treatment years (1: 31.9% vs. 2: 43.9% vs. 3: 51.9%, P < 0.05). The numbers of Azotobacter, Nitrobacteria, cellulolytic bacteria, and inorganic phosphate bacteria increased progressively with the numbers of straw returning years. Cellulolytic bacteria and inorganic phosphate bacteria were significantly positively correlated with the decomposition rate (r = 0.783 and r = 0.375, P < 0.05). Based on 16S sequencing results, straw returning improved the microbial diversity of paddy soils by increasing unclassified bacteria and keeping dominant soil microorganism populations unchanged. The relative importance of individual microbial taxa was compared using random forest models. Proteobacteria, ammoniating bacteria, and potassium dissolving bacteria contributed to peroxidase activity. The significant contributors to phosphate monoesterase were Acidobacteriota, Desulfobacterota, ammoniating bacteria, cellulolytic bacteria, and potassium-dissolving bacteria. Proteobacteria, ammoniating bacteria, cellulolytic bacteria, and potassium-dissolving bacteria contributed to urease activity. Desulfobacterota, ammoniating bacteria, cellulolytic bacteria, and potassium-dissolving bacteria contributed to the neutral invertase activity. In conclusion, soil microbial community structure and function were affected within 2 years of straw returning, which was driven by the combined effects of soil organic carbon, available nitrogen, available potassium, and pH. With elapsing straw returning years, soil properties interacted with soil microbial communities, and a healthier soil micro-ecological environment would form.
Gastrointestinal microbiota alteration induced by Mucor circinelloides in a murine model
Katherine D. Mueller , Hao Zhang , Christian R. Serrano , R. Blake Billmyre , Eun Young Huh , Philipp Wiemann , Nancy P. Keller , Yufeng Wang , Joseph Heitman , Soo Chan Lee
J. Microbiol. 2019;57(6):509-520.   Published online May 27, 2019
DOI: https://doi.org/10.1007/s12275-019-8682-x
  • 11 View
  • 0 Download
  • 18 Citations
AbstractAbstract
Mucor circinelloides is a pathogenic fungus and etiologic agent of mucormycosis. In 2013, cases of gastrointestinal illness after yogurt consumption were reported to the US FDA, and the producer found that its products were contaminated with Mucor. A previous study found that the Mucor strain isolated from an open contaminated yogurt exhibited virulence in a murine systemic infection model and showed that this strain is capable of surviving passage through the gastrointestinal tract of mice. In this study, we isolated another Mucor strain from an unopened yogurt that is closely related but distinct from the first Mucor strain and subsequently examined if Mucor alters the gut microbiota in a murine host model. DNA extracted from a ten-day course of stool samples was used to analyze the microbiota in the gastrointestinal tracts of mice exposed via ingestion of Mucor spores. The bacterial 16S rRNA gene and fungal ITS1 sequences obtained were used to identify taxa of each kingdom. Linear regressions revealed that there are changes in bacterial and fungal abundance in the gastrointestinal tracts of mice which ingested Mucor. Furthermore, we found an increased abundance of the bacterial genus Bacteroides and a decreased abundance of the bacteria Akkermansia muciniphila in the gastrointestinal tracts of exposed mice. Measurements of abundances show shifts in relative levels of multiple bacterial and fungal taxa between mouse groups. These findings suggest that exposure of the gastrointestinal tract to Mucor can alter the microbiota and, more importantly, illustrate an interaction between the intestinal mycobiota and bacteriota. In addition, Mucor was able to induce increased permeability in epithelial cell monolayers in vitro, which might be indicative of unstable intestinal barriers. Understanding how the gut microbiota is shaped is important to understand the basis of potential methods of treatment for gastrointestinal illness. How the gut microbiota changes in response to exposure, even by pathogens not considered to be causative agents of food-borne illness, may be important to how commercial food producers prevent and respond to contamination of products aimed at the public. This study provides evidence that the fungal microbiota, though understudied, may play an important role in diseases of the human gut.

Journal of Microbiology : Journal of Microbiology
TOP