Review
- The functional study of human proteins using humanized yeast
-
Seho Kim , Juhee Park , Taekyung Kim , Jung-Shin Lee
-
J. Microbiol. 2020;58(5):343-349. Published online April 27, 2020
-
DOI: https://doi.org/10.1007/s12275-020-0136-y
-
-
18
View
-
0
Download
-
3
Citations
-
Abstract
- The functional and optimal expression of genes is crucial
for survival of all living organisms. Numerous experiments
and efforts have been performed to reveal the mechanisms
required for the functional and optimal expression of human
genes. The yeast Saccharomyces cerevisiae has evolved
independently of humans for billions of years. Nevertheless,
S. cerevisiae has many conserved genes and expression mechanisms
that are similar to those in humans. Yeast is the most
commonly used model organism for studying the function
and expression mechanisms of human genes because it has
a relatively simple genome structure, which is easy to manipulate.
Many previous studies have focused on understanding
the functions and mechanisms of human proteins using
orthologous genes and biological systems of yeast. In this
review, we mainly introduce two recent studies that replaced
human genes and nucleosomes with those of yeast. Here, we
suggest that, although yeast is a relatively small eukaryotic
cell, its humanization is useful for the direct study of human
proteins. In addition, yeast can be used as a model organism
in a broader range of studies, including drug screening.
Research Support, Non-U.S. Gov't
- Seasonal Changes in Nitrogen-Cycle Gene Abundances and in Bacterial Communities in Acidic Forest Soils
-
Jaejoon Jung , Jinki Yeom , Jiwon Han , Jisun Kim , Woojun Park
-
J. Microbiol. 2012;50(3):365-373. Published online June 30, 2012
-
DOI: https://doi.org/10.1007/s12275-012-1465-2
-
-
14
View
-
0
Download
-
46
Citations
-
Abstract
- The abundance of genes related to the nitrogen biogeochemical cycle and the microbial community in forest soils (bacteria, archaea, fungi) were quantitatively analyzed via real-time PCR using 11 sets of specific primers amplifying nifH, bacterial amoA, archaeal amoA, narG, nirS, nirK, norB, nosZ, bacterial 16S rRNA gene, archaeal 16S rRNA gene, and the ITS sequence of fungi. Soils were sampled from Bukhan Mountain from September of 2010 to July of 2011 (7 times). Bacteria were the predominant microbial community in all samples. However, the abundance of archaeal amoA was greater than bacterial amoA throughout the year. The abundances of nifH, nirS, nirK, and norB genes changed in a similar pattern, while narG and nosZ appeared in sensitive to the environmental changes. Clone libraries of bacterial 16S rRNA genes were constructed from summer and winter soil samples and these revealed that Acidobacteria was the most predominant phylum in acidic forest soil environments in both samples. Although a specific correlation of environmental factor and gene abundance was not verified by principle component analysis, our data suggested that the combination of biological, physical, and chemical characteristics of forest soils created distinct conditions favoring the nitrogen biogeochemical cycle and that bacterial communities in undisturbed acidic forest soils were quite stable during seasonal change.