Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
3 "nitrogen starvation"
Filter
Filter
Article category
Keywords
Publication year
Journal Articles
Characterization of staphylococcal endolysin LysSAP33 possessing untypical domain composition
Jun-Hyeok Yu , Do-Won Park , Jeong-A Lim , Jong-Hyun Park
J. Microbiol. 2021;59(9):840-847.   Published online August 12, 2021
DOI: https://doi.org/10.1007/s12275-021-1242-1
  • 55 View
  • 0 Download
  • 5 Web of Science
  • 5 Crossref
AbstractAbstract
Endolysin, a peptidoglycan hydrolase derived from bacteriophage, has been suggested as an alternative antimicrobial agent. Many endolysins on staphylococcal phages have been identified and applied extensively against Staphylococcus spp. Among them, LysK-like endolysin, a well-studied staphylococcal endolysin, accounts for most of the identified endolysins. However, relatively little interest has been paid to LysKunlike endolysin and a few of them has been characterized. An endolysin LysSAP33 encoded on bacteriophage SAP33 shared low homology with LysK-like endolysin in sequence by 41% and domain composition (CHAP-unknown CBD). A green fluorescence assay using a fusion protein for Lys- SAP33_CBD indicated that the CBD domain (157-251 aa) was bound to the peptidoglycan of S. aureus. The deletion of LysSAP33_CBD at the C-terminal region resulted in a significant decrease in lytic activity and efficacy. Compared to LysK-like endolysin, LysSAP33 retained its lytic activity in a broader range of temperature, pH, and NaCl concentrations. In addition, it showed a higher activity against biofilms than LysK-like endolysin. This study could be a helpful tool to develop our understanding of staphylococcal endolysins not belonging to LysK-like endolysins and a potential biocontrol agent against biofilms.

Citations

Citations to this article as recorded by  
  • Phage-Derived Endolysins Against Resistant Staphylococcus spp.: A Review of Features, Antibacterial Activities, and Recent Applications
    Mina Golban, Javad Charostad, Hossein Kazemian, Hamid Heidari
    Infectious Diseases and Therapy.2024;[Epub]     CrossRef
  • Molecular Machinery of the Triad Holin, Endolysin, and Spanin: Key Players Orchestrating Bacteriophage-Induced Cell Lysis and their Therapeutic Applications
    Safia Samir
    Protein & Peptide Letters.2024; 31(2): 85.     CrossRef
  • A Novel Truncated CHAP Modular Endolysin, CHAPSAP26-161, That Lyses Staphylococcus aureus, Acinetobacter baumannii, and Clostridioides difficile, and Exhibits Therapeutic Effects in a Mouse Model of A. baumannii Infection
    Yoon-Jung Choi, Shukho Kim, Ram Hari Dahal, Jungmin Kim
    Journal of Microbiology and Biotechnology.2024; 34(8): 1718.     CrossRef
  • Therapeutic potential of bacteriophage endolysins for infections caused by Gram-positive bacteria
    He Liu, Zhen Hu, Mengyang Li, Yi Yang, Shuguang Lu, Xiancai Rao
    Journal of Biomedical Science.2023;[Epub]     CrossRef
  • Endolysin, a Promising Solution against Antimicrobial Resistance
    Mujeeb ur Rahman, Weixiao Wang, Qingqing Sun, Junaid Ali Shah, Chao Li, Yanmei Sun, Yuanrui Li, Bailing Zhang, Wei Chen, Shiwei Wang
    Antibiotics.2021; 10(11): 1277.     CrossRef
Requirement of the isocitrate lyase gene ICL1 for VPS41-mediated starvation response in Cryptococcus neoformans
Zhe Xu , Yafei Zhi , Jianzhang Dong , Benfeng Lin , Di Ye , Xiaoguang Liu
J. Microbiol. 2016;54(7):487-491.   Published online June 28, 2016
DOI: https://doi.org/10.1007/s12275-016-6177-6
  • 42 View
  • 0 Download
  • 1 Crossref
AbstractAbstract
Cryptococcus neoformans is a major cause of fungal meningitis in individuals with impaired immunity. Our previous studies have shown that the VPS41 gene plays a critical role in the survival of Cryptococcus neoformans under nitrogen starvation; however, the molecular mechanisms underlying VPS41-mediated starvation response remain to be elucidated. In the present study, we show that, under nitrogen starvation, VPS41 strongly enhanced ICL1 expression in C. neoformans and that overexpression of ICL1 in the vps41 mutant dramatically suppressed its defects in starvation response due to the loss of VPS41 function. Moreover, targeted deletion of ICL1 resulted in a dramatic decline in viability of C. neoformans cells under nitrogen deprivation. Taken together, our data suggest a model in which VPS41 up-regulates ICL1 expression, directly or indirectly, to promote survival of C. neoformans under nitrogen starvation.

Citations

Citations to this article as recorded by  
  • Physiological and Transcriptomic Analysis of a Chronologically Long-Lived Saccharomyces cerevisiae Strain Obtained by Evolutionary Engineering
    Mevlüt Arslan, Can Holyavkin, Halil İbrahim Kısakesen, Alican Topaloğlu, Yusuf Sürmeli, Zeynep Petek Çakar
    Molecular Biotechnology.2018; 60(7): 468.     CrossRef
Research Support, Non-U.S. Gov't
The Schizosaccharomyces pombe Gene Encoding [gamma]-Glutamyl Transpeptidase I Is Regulated by Non-fermentable Carbon Sources and Nitrogen Starvation
Hong-Gyum Kim , Hey-Jung Park , Hyun-Jung Kang , Hye-Won Lim , Kyunghoon Kim , Eun-Hee Park , Kisup Ahn , Chang-Jin Lim
J. Microbiol. 2005;43(1):44-48.
DOI: https://doi.org/2139 [pii]
  • 35 View
  • 0 Download
AbstractAbstract
In our previous study, the first structural gene (GGTI) encoding g-glutamyl transpeptidase was cloned and characterized from the fission yeast Schizosaccharomyces pombe, and its transcription, using the GGTI-lacZ fusion gene, containing the 1,085 bp upstream region from the translational initiation point, was found to be enhanced by sodium nitroprusside and L-buthionine-(S,R)-sulfoximine (BSO). In the present work, regulation of the GGTI gene was further elucidated. Non-fermentable carbon sources, such as acetate and ethanol, markedly enhanced the synthesis of [beta]-galactosidase from the GGTI-lacZ fusion gene. However, its induction by non-fermentable carbon sources appeared to be independent of the presence of the Pap1 protein. Nitrogen starvation also gave rise to induction of GGTI gene expression in a Pap1-independent manner. The three additional fusion plasmids, carrying 754, 421 and 156 bp regions, were constructed. The sequence responsible for the induction by non-fermentable carbon sources and nitrogen starvation was identified to exist within a -421 bp region of the GGTI gene. Taken together, the S. pombe GGTI gene is regulated by non-fermentable carbon sources and nitrogen starvation.

Journal of Microbiology : Journal of Microbiology
TOP