Journal Articles
- Characterization of staphylococcal endolysin LysSAP33 possessing untypical domain composition
-
Jun-Hyeok Yu , Do-Won Park , Jeong-A Lim , Jong-Hyun Park
-
J. Microbiol. 2021;59(9):840-847. Published online August 12, 2021
-
DOI: https://doi.org/10.1007/s12275-021-1242-1
-
-
55
View
-
0
Download
-
5
Web of Science
-
5
Crossref
-
Abstract
-
Endolysin, a peptidoglycan hydrolase derived from bacteriophage,
has been suggested as an alternative antimicrobial
agent. Many endolysins on staphylococcal phages have been
identified and applied extensively against Staphylococcus spp.
Among them, LysK-like endolysin, a well-studied staphylococcal
endolysin, accounts for most of the identified endolysins.
However, relatively little interest has been paid to LysKunlike
endolysin and a few of them has been characterized.
An endolysin LysSAP33 encoded on bacteriophage SAP33
shared low homology with LysK-like endolysin in sequence
by 41% and domain composition (CHAP-unknown CBD).
A green fluorescence assay using a fusion protein for Lys-
SAP33_CBD indicated that the CBD domain (157-251 aa)
was bound to the peptidoglycan of S. aureus. The deletion of
LysSAP33_CBD at the C-terminal region resulted in a significant
decrease in lytic activity and efficacy. Compared to
LysK-like endolysin, LysSAP33 retained its lytic activity in a
broader range of temperature, pH, and NaCl concentrations.
In addition, it showed a higher activity against biofilms than
LysK-like endolysin. This study could be a helpful tool to develop
our understanding of staphylococcal endolysins not
belonging to LysK-like endolysins and a potential biocontrol
agent against biofilms.
-
Citations
Citations to this article as recorded by

- Phage-Derived Endolysins Against Resistant Staphylococcus spp.: A Review of Features, Antibacterial Activities, and Recent Applications
Mina Golban, Javad Charostad, Hossein Kazemian, Hamid Heidari
Infectious Diseases and Therapy.2024;[Epub] CrossRef - Molecular Machinery of the Triad Holin, Endolysin, and Spanin: Key
Players Orchestrating Bacteriophage-Induced Cell Lysis and their
Therapeutic Applications
Safia Samir
Protein & Peptide Letters.2024; 31(2): 85. CrossRef - A Novel Truncated CHAP Modular Endolysin, CHAPSAP26-161, That Lyses Staphylococcus aureus, Acinetobacter baumannii, and Clostridioides difficile, and Exhibits Therapeutic Effects in a Mouse Model of A. baumannii Infection
Yoon-Jung Choi, Shukho Kim, Ram Hari Dahal, Jungmin Kim
Journal of Microbiology and Biotechnology.2024; 34(8): 1718. CrossRef - Therapeutic potential of bacteriophage endolysins for infections caused by Gram-positive bacteria
He Liu, Zhen Hu, Mengyang Li, Yi Yang, Shuguang Lu, Xiancai Rao
Journal of Biomedical Science.2023;[Epub] CrossRef - Endolysin, a Promising Solution against Antimicrobial Resistance
Mujeeb ur Rahman, Weixiao Wang, Qingqing Sun, Junaid Ali Shah, Chao Li, Yanmei Sun, Yuanrui Li, Bailing Zhang, Wei Chen, Shiwei Wang
Antibiotics.2021; 10(11): 1277. CrossRef
- Requirement of the isocitrate lyase gene ICL1 for VPS41-mediated starvation response in Cryptococcus neoformans
-
Zhe Xu , Yafei Zhi , Jianzhang Dong , Benfeng Lin , Di Ye , Xiaoguang Liu
-
J. Microbiol. 2016;54(7):487-491. Published online June 28, 2016
-
DOI: https://doi.org/10.1007/s12275-016-6177-6
-
-
42
View
-
0
Download
-
1
Crossref
-
Abstract
-
Cryptococcus neoformans is a major cause of fungal meningitis
in individuals with impaired immunity. Our previous
studies have shown that the VPS41 gene plays a critical role
in the survival of Cryptococcus neoformans under nitrogen
starvation; however, the molecular mechanisms underlying
VPS41-mediated starvation response remain to be elucidated.
In the present study, we show that, under nitrogen starvation,
VPS41 strongly enhanced ICL1 expression in C. neoformans
and that overexpression of ICL1 in the vps41 mutant dramatically
suppressed its defects in starvation response due
to the loss of VPS41 function. Moreover, targeted deletion of
ICL1 resulted in a dramatic decline in viability of C. neoformans
cells under nitrogen deprivation. Taken together, our
data suggest a model in which VPS41 up-regulates ICL1 expression,
directly or indirectly, to promote survival of C. neoformans
under nitrogen starvation.
-
Citations
Citations to this article as recorded by

- Physiological and Transcriptomic Analysis of a Chronologically Long-Lived Saccharomyces cerevisiae Strain Obtained by Evolutionary Engineering
Mevlüt Arslan, Can Holyavkin, Halil İbrahim Kısakesen, Alican Topaloğlu, Yusuf Sürmeli, Zeynep Petek Çakar
Molecular Biotechnology.2018; 60(7): 468. CrossRef
Research Support, Non-U.S. Gov't
- The Schizosaccharomyces pombe Gene Encoding [gamma]-Glutamyl Transpeptidase I Is Regulated by Non-fermentable Carbon Sources and Nitrogen Starvation
-
Hong-Gyum Kim , Hey-Jung Park , Hyun-Jung Kang , Hye-Won Lim , Kyunghoon Kim , Eun-Hee Park , Kisup Ahn , Chang-Jin Lim
-
J. Microbiol. 2005;43(1):44-48.
-
DOI: https://doi.org/2139 [pii]
-
-
Abstract
-
In our previous study, the first structural gene (GGTI) encoding g-glutamyl transpeptidase was cloned and characterized from the fission yeast Schizosaccharomyces pombe, and its transcription, using the GGTI-lacZ fusion gene, containing the 1,085 bp upstream region from the translational initiation point, was found to be enhanced by sodium nitroprusside and L-buthionine-(S,R)-sulfoximine (BSO). In the present work, regulation of the GGTI gene was further elucidated. Non-fermentable carbon sources, such as acetate and ethanol, markedly enhanced the synthesis of [beta]-galactosidase from the GGTI-lacZ fusion gene. However, its induction by non-fermentable carbon sources appeared to be independent of the presence of the Pap1 protein. Nitrogen starvation also gave rise to induction of GGTI gene expression in a Pap1-independent manner. The three additional fusion plasmids, carrying 754, 421 and 156 bp regions, were constructed. The sequence responsible for the induction by non-fermentable carbon sources and nitrogen starvation was identified to exist within a -421 bp region of the GGTI gene. Taken together, the S. pombe GGTI gene is regulated by non-fermentable carbon sources and nitrogen starvation.