Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
2 "nitrosative stress"
Filter
Filter
Article category
Keywords
Publication year
Journal Article
Comparative Transcriptomic Analysis of Flagellar‑Associated Genes in Salmonella Typhimurium and Its rnc Mutant
Seungmok Han , Ji-Won Byun , Minho Lee
J. Microbiol. 2024;62(1):33-48.   Published online January 5, 2024
DOI: https://doi.org/10.1007/s12275-023-00099-5
  • 70 View
  • 0 Download
  • 2 Web of Science
  • 2 Crossref
AbstractAbstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a globally recognized foodborne pathogen that affects both animals and humans. Endoribonucleases mediate RNA processing and degradation in the adaptation of bacteria to environmental changes and have been linked to the pathogenicity of S. Typhimurium. Not much is known about the specific regulatory mechanisms of these enzymes in S. Typhimurium, particularly in the context of environmental adaptation. Thus, this study carried out a comparative transcriptomic analysis of wild-type S. Typhimurium SL1344 and its mutant (Δrnc), which lacks the rnc gene encoding RNase III, thereby elucidating the detailed regulatory characteristics that can be attributed to the rnc gene. Global gene expression analysis revealed that the Δrnc strain exhibited 410 upregulated and 301 downregulated genes (fold-change > 1.5 and p < 0.05), as compared to the wild-type strain. Subsequent bioinformatics analysis indicated that these differentially expressed genes are involved in various physiological functions, in both the wild-type and Δrnc strains. This study provides evidence for the critical role of RNase III as a general positive regulator of flagellar-associated genes and its involvement in the pathogenicity of S. Typhimurium.

Citations

Citations to this article as recorded by  
  • CspA regulates stress resistance, flagellar motility and biofilm formation in Salmonella Enteritidis
    Xiang Li, Yan Cui, Xiaohui Sun, Chunlei Shi, Shoukui He, Xianming Shi
    Food Bioscience.2025; 66: 106237.     CrossRef
  • Influence of Flagella on Salmonella Enteritidis Sedimentation, Biofilm Formation, Disinfectant Resistance, and Interspecies Interactions
    Huixue Hu, Jingguo Xu, Jingyu Chen, Chao Tang, Tianhao Zhou, Jun Wang, Zhuangli Kang
    Foodborne Pathogens and Disease.2024;[Epub]     CrossRef
Research Support, Non-U.S. Gov't
Helicobacter pylori Proteins Response to Nitric Oxide Stress
Wei Qu , Yabin Zhou , Chunhong Shao , Yundong Sun , Qunye Zhang , Chunyan Chen , Jihui Jia
J. Microbiol. 2009;47(4):486-493.   Published online September 9, 2009
DOI: https://doi.org/10.1007/s12275-008-0266-0
  • 28 View
  • 0 Download
  • 29 Scopus
AbstractAbstract
Helicobacter pylori is a highly pathogenic microorganism with various strategies to evade human immune responses. Nitric oxide (NO) and reactive nitrogen species (RNS) generated via nitric oxide synthase pathway are important effectors during the innate immune response. However, the mechanisms of H. pylori to survive the nitrosative stress are not clear. Here the proteomic approach has been used to define the adaptive response of H. pylori to nitrosative stress. Proteomic analysis showed that 38 protein spots were regulated by NO donor, sodium nitroprusside (SNP). These proteins were involved in protein processing, antioxidation, general stress response, and virulence, as well as some unknown functions. Particularly, some of them were participated in iron metabolism, potentially under the control of ferric uptake regulator (Fur). Real time PCR revealed that fur was induced under nitrosative stress, consistent with our deduction. One stress-related protein up-regulated under nitrosative conditions was thioredoxin reductase (TrxR). Inactivation of fur or trxR can lead to increased susceptivity to nitrosative stress respectively. These studies described the adaptive response of H. pylori to nitric oxide stress, and analyzed the relevant role of Fur regulon and TrxR in nitrosative stress management.

Journal of Microbiology : Journal of Microbiology
TOP