Search
- Page Path
-
HOME
> Search
Journal Article
- Genome Sequencing Highlights the Plant Cell Wall Degrading Capacity of Edible Mushroom Stropharia rugosoannulata
-
Mengpei Guo , Xiaolong Ma , Yan Zhou , Yinbing Bian , Gaolei Liu , Yingli Cai , Tianji Huang , Hongxia Dong , Dingjun Cai , Xueji Wan , Zhihong Wang , Yang Xiao , Heng Kang
-
J. Microbiol. 2023;61(1):83-93. Published online February 1, 2023
-
DOI: https://doi.org/10.1007/s12275-022-00003-7
-
-
17
View
-
0
Download
-
3
Citations
-
Abstract
- The basidiomycetous edible mushroom Stropharia rugosoannulata has excellent nutrition, medicine, bioremediation, and
biocontrol properties. S. rugosoannulata has been widely and easily cultivated using agricultural by-products showing strong
lignocellulose degradation capacity. However, the unavailable high-quality genome information has hindered the research
on gene function and molecular breeding of S. rugosoannulata. This study provided a high-quality genome assembly and
annotation from S. rugosoannulata monokaryotic strain QGU27 based on combined Illumina-Nanopore data. The genome
size was about 47.97 Mb and consisted of 20 scaffolds, with an N50 of 3.73 Mb and a GC content of 47.9%. The repetitive
sequences accounted for 17.41% of the genome, mostly long terminal repeats (LTRs). A total of 15,726 coding gene
sequences were putatively identified with the BUSCO score of 98.7%. There are 142 genes encoding plant cell wall degrading
enzymes (PCWDEs) in the genome, and 52, 39, 30, 11, 8, and 2 genes related to lignin, cellulose, hemicellulose, pectin,
chitin, and cutin degradation, respectively. Comparative genomic analysis revealed that S. rugosoannulata is superior in
utilizing aldehyde-containing lignins and is possible to utilize algae during the cultivation.
- Oligomerization of the substitution mutants of autographa californica nuclear polyhedrosis Virus (AcNPV) gp64 glycoprotein
-
Kim, Ki Nam , Poo, Ha Ryoung , Yang, Jai Myung
-
J. Microbiol. 1997;35(1):72-77.
-
-
-
Abstract
- The baculovirus gp64 glycoprotein is a major component of the envelope protein of budded virus (BV). It has been shown that the gp64 glycoprotein plays an essential role in the infection process, especialy fusion between virus envelope and cellular endosomic membrane. Recently we reported optimal conditions required for gp64-mediated membrane fusion in pGP64 DNA transfected Spodoptera frugiperda (Sf9) cells (H. J. Kim and J. M. Yang, Jour, Microbiology, 34, 7-14). In order to investigate the role of hydrophobicity within the fusion domain of the gp64 glycoprotein for membrane fusion, 13 mutants which have substitution mutation within hydrophobic region I were constructed by PCR-derived site-derected mutagenesis. Each mutated gp64 glycoproteins was transiently expressed by transfecting plasmid DNA into Spodoptera frugiperda (Sf9) cells. Oligomerization of the transisently expressed gp64 glycoproteins was a analysed by running them on SDS-polyacrylamide gel electrophoresis under non-reducing condition followed by immunoblotting. All of the mutant gp64 glycoproteins expect cysteine-228 were able to form trimers. These results suggest that hydrophobic region I of the gp64 may not be responsible for the oligomerization of the gp64 glycoprotein.
TOP