Aspergillus fumigatus is the most prevalent saprophytic fungi
and can cause severe invasive aspergillosis in immunocompromised
individuals. For infection of A. fumigatus, the small
hydrophobic conidia have been shown to play a dominant
role. In this study, we found that deletion of erg5, a C-22 sterol
desaturase gene which function in the last two steps of ergosterol
biosynthesis, was sufficient to block ergosterol biosynthesis
and conidiation. The deletion phenotype was further
verified by a conditional expression strain of erg5 using the
inducible tet-on system. Strikingly, erg5 mutant displays increased
susceptibility to antifungal azoles itraconazole. RNA
sequencing analysis showed that erg5 deficiency resulted in
changes in transcription mainly related to lipid, carbohydrate,
and amino acid metabolism. Genes encoding ergosterol biosynthesis-
related enzymes were found to be up-regulated in
erg5 null mutants. However, genes involved in asexual development,
including upstream regulators, melanin biosynthesis
enzymes, heterotrimeric G proteins, and MAPK signaling,
were down-regulated to various degrees. Furthermore, metabolomic
study revealed that erg5 deficiency also resulted in
altered lipid and amino acid metabolism, which was consistent
with our transcriptomics analysis. Collectively, our study
established a link between ergosterol biosynthesis and asexual
development at the transcriptomics and metabolomics level
in A. fumigatus.
Citations
Citations to this article as recorded by
Quantitative proteomic analysis reveals Ga(III) polypyridyl catecholate complexes disrupt Aspergillus fumigatus mitochondrial function Magdalena Piatek, Brunella Grassiri, Lewis More O’Ferrall, Anna Maria Piras, Giovanna Batoni, Semih Esin, Christine O’Connor, Darren Griffith, Anne Marie Healy, Kevin Kavanagh JBIC Journal of Biological Inorganic Chemistry.2024; 29(7-8): 707. CrossRef
Ergosterol Is Critical for Sporogenesis in Cryptococcus neoformans Amber R. Matha, Xiaofeng Xie, Xiaorong Lin Journal of Fungi.2024; 10(2): 106. CrossRef
Erg4 Is Involved in Ergosterol Biosynthesis, Conidiation and Stress Response in Penicillium expansum Zhanhong Han, Yuanyuan Zong, Xuemei Zhang, Di Gong, Bin Wang, Dov Prusky, Edward Sionov, Huali Xue, Yang Bi Journal of Fungi.2023; 9(5): 568. CrossRef
A chromosome-scale genome assembly of the grape powdery mildew pathogen
Erysiphe necator
reveals its genomic architecture and previously unknown features of its biology
Alex Z. Zaccaron, Tara Neill, Jacob Corcoran, Walter F. Mahaffee, Ioannis Stergiopoulos, Gustavo H. Goldman mBio.2023;[Epub] CrossRef
Saccharification of five cellulosic wastes, i.e. rice husks, wheat bran, corn cobs, wheat straw and rice straw by three cellulytic fungi, i.e. Aspergillus glaucus MN1, Aspergillus oryzae MN2 and Penicillium purpurogenum MN3, during solid-state fermentation (SSF) was laboratory studied. Rice husks, wheat bran, and corn cobs
were selected as inducers of glucose production in the tested fungi. An incubation interval of 10 days was optimal for glucose production. Maximal activities of the cellulases FP-ase, CMC-ase, and β-glucosidase were detected during SSF of rice husks by P. purpurogenum; however, α-amylase activity (7.2 U/g) was comparatively reduced. Meanwhile, the productivities of FP-ase, CMC-ase, and β-glucosidase were high during SSF of rice husks by A. glaucus; however, they decreased during SSF of corn cobs by P. purpurogenum. Addition of rock phosphate (RP) (75 mg P2O5) decreased the pH of SSF media. (NH4)2SO4 was found to be less inducer of cellulytic enzymes, during SSF of rice husks by A. glaucus or A. oryzae; it also induced phytase production and solubilization of RP. The organic acids associated with saccharification of the wastes studied have also been investigated. The highest concentration of levulinic acid was detected (46.15 mg/g) during SSF of corn cobs by P. purpurogenum. Likewise, oxalic acid concentration was 43.20 mg/g during SSF of rice husks by P. purpurogenum.