Journal Article
- Genetic Characteristics and Phylogeographic Dynamics of Echovirus
-
Yan Wang , Pir Tariq Shah , Yue Liu , Amina Nawal Bahoussi , Li Xing
-
J. Microbiol. 2023;61(9):865-877. Published online September 15, 2023
-
DOI: https://doi.org/10.1007/s12275-023-00078-w
-
-
Abstract
- Echoviruses belong to the genus Enterovirus in the Picornaviridae family, forming a large group of Enterovirus B (EVB)
within the Enteroviruses. Previously, Echoviruses were classified based on the coding sequence of VP1. In this study,
we performed a reliable phylogenetic classification of 277 sequences isolated from 1992 to 2019 based on the full-length
genomes of Echovirus. In this report, phylogenetic, phylogeographic, recombination, and amino acid variability landscape
analyses were performed to reveal the evolutional characteristics of Echovirus worldwide. Echoviruses were clustered into
nine major clades, e.g., G1–G9. Phylogeographic analysis showed that branches G2–G9 were linked to common strains,
while the branch G1 was only linked to G5. In contrast, strains E12, E14, and E16 clustered separately from their G3 and
G7 clades respectively, and became a separate branch. In addition, we identified a total of 93 recombination events, where
most of the events occurred within the VP1-VP4 coding regions. Analysis of amino acid variation showed high variability in
the a positions of VP2, VP1, and VP3. This study updates the phylogenetic and phylogeographic information of Echovirus
and indicates that extensive recombination and significant amino acid variation in the capsid proteins drove the emergence
of new strains.
Research Support, Non-U.S. Gov'ts
- Acinetobacter baumannii Outer Membrane Protein A Modulates the Biogenesis of Outer Membrane Vesicles
-
Dong Chan Moon , Chul Hee Choi , Jung Hwa Lee , Chi-Won Choi , Hye-Yeon Kim , Jeong Soon Park , Seung Il Kim , Je Chul Lee
-
J. Microbiol. 2012;50(1):155-160. Published online February 27, 2012
-
DOI: https://doi.org/10.1007/s12275-012-1589-4
-
-
8
View
-
0
Download
-
102
Citations
-
Abstract
- Acinetobacter baumannii secretes outer membrane vesicles
(OMVs) during both in vitro and in vivo growth, but the
biogenesis mechanism by which A. baumannii produces
OMVs remains undefined. Outer membrane protein A of
A. baumannii (AbOmpA) is a major protein in the outer
membrane and the C-terminus of AbOmpA interacts with
diaminopimelate of peptidoglycan. This study investigated
the role of AbOmpA in the biogenesis of A. baumannii
OMVs. Quantitative and qualitative approaches were used
to analyze OMV biogenesis in A. baumannii ATCC 19606T
and an isogenic ΔAbOmpA mutant. OMV production was
significantly increased in the ΔAbOmpA mutant compared
to wild-type bacteria as demonstrated by quantitation of
proteins and lipopolysaccharides (LPS) packaged in OMVs.
LPS profiles prepared from OMVs from wild-type bacteria
and the ΔAbOmpA mutant had identical patterns, but
proteomic analysis showed different protein constituents in
OMVs from wild-type bacteria compared to the ΔAbOmpA
mutant. In conclusion, AbOmpA influences OMV biogenesis
by controlling OMV production and protein composition.
- Immunostimulatory Activity of Dendritic Cells Pulsed with Carbonic Anhydrase IX and Acinetobacter baumannii Outer Membrane Protein A for Renal Cell Carcinoma
-
Bo Ra Kim , Eun Kyoung Yang , Sun Hee Kim , Dong Chan Moon , Hwa Jung Kim , Je Chul Lee , Duk Yoon Kim
-
J. Microbiol. 2011;49(1):115-120. Published online March 3, 2011
-
DOI: https://doi.org/10.1007/s12275-011-1037-x
-
-
7
View
-
0
Download
-
5
Citations
-
Abstract
- Dendritic cell (DC)-based immunotherapy is a potent therapeutic modality for treating renal cell carcinoma (RCC), but development of antigens specific for tumor-targeting and anti-tumor immunity is of great interest for clinical trials. The present study investigated the ability of DCs pulsed with a combination of carbonic anhydrase IX (CA9) as an RCC-specific biomarker and Acinetobacter baumannii outer membrane protein A (AbOmpA) as an immunoadjuvant to induce anti-tumor immunity against murine renal cell carcinoma (RENCA) in a murine model. Murine bone-marrow-derived DCs pulsed with a combination of RENCA lysates and AbOmpA were tested for their capacity to induce DC maturation and T cell responses in vitro. A combination of RENCA lysates and AbOmpA up-regulated the surface expression of co-stimulatory molecules, CD80 and CD86, and the antigen presenting molecules, major histocompatibility (MHC) class I and class II, in DCs. A combination of RENCA lysates and AbOmpA also induced interleukin-12 (IL-12) production in DCs. Next, the immunostimulatory activity of DCs pulsed with a combination of CA9 and AbOmpA
was determined. A combination of CA9 and AbOmpA up-regulated the surface expression of co-stimulatory molecules and antigen presenting molecules in DCs. DCs pulsed with a combination of CA9 and AbOmpA effectively secreted IL-12 but not IL-10. These cells interacted with T cells and formed clusters. DCs pulsed
with CA9 and AbOmpA elicited the secretion of interferon-γ and IL-2 in T cells. In conclusion, a combination of CA9 and AbOmpA enhanced the immunostimulatory activity of DCs, which may effectively induce anti-tumor immunity against human RCC.