Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
2 "pathogenesis"
Filter
Filter
Article category
Keywords
Publication year
Review
Minor and major circRNAs in virus and host genomes
Zhihao Lou , Rui Zhou , Yinghua Su , Chun Liu , Wenting Ruan , Che Ok Jeon , Xiao Han , Chun Lin , Baolei Jia
J. Microbiol. 2021;59(3):324-331.   Published online February 23, 2021
DOI: https://doi.org/10.1007/s12275-021-1021-z
  • 11 View
  • 0 Download
  • 5 Citations
AbstractAbstract
As a special type of noncoding RNA, circular RNAs (circRNAs) are prevalent in many organisms. They can serve as sponges for microRNAs and protein scaffolds, or templates for protein translation, making them linked to cellular homeostasis and disease progression. In recent years, circRNAs have been found to be abnormally expressed during the processes of viral infection and pathogenesis, and can help a virus escape the immune response of a host. Thus, they are now considered to play important functions in the invasion and development of viruses. Moreover, the potential application of circRNAs as biomarkers of viral infection or candidates for therapeutic targeting deserves consideration. This review summarizes circRNAs in the transcriptome, including their classification, production, functions, and value as biomarkers. This review paper also describes research progress on circRNAs in viral infection (mainly hepatitis B virus, HIV, and some human herpes viruses) and aims to provide new ideas for antiviral therapies targeting circRNAs.
Journal Article
Azohydromonas aeria sp. nov., isolated from air
Han Xue , Chun-gen Piao , Dan-ran Bian , Min-wei Guo , Yong Li
J. Microbiol. 2020;58(7):543-549.   Published online June 27, 2020
DOI: https://doi.org/10.1007/s12275-020-9423-x
  • 15 View
  • 0 Download
  • 4 Citations
AbstractAbstract
A grey pink colored bacterium, strain t3-1-3T, was isolated from the air at the foot of the Xiangshan Mountain in Beijing, China. The cells are aerobic, Gram-stain-negative, non-sporeforming, motile and coccoid-rod shaped (0.9–1.2 × 1.9–2.1 μm). Strain t3-1-3T was catalase-positive and oxidase-negative and this strain grew at 4–42°C (optimum 28°C), a pH of 4.0–9.0 (optimum pH 7.0) and under 0–2% (w/v) NaCl (optimum 0–1% NaCl). A phylogenetic analysis based on 16S rRNA gene sequences revealed that strain t3-1-3T was closely related to Azohydromonas riparia UCM-11T (97.4% similarity), followed by Azohydromonas australica G1-2T (96.8%) and Azohydromonas ureilytica UCM-80T (96.7%). The genome of strain t3-1-3T contains 6,895 predicted protein-encoding genes, 8 rRNA genes, 62 tRNA genes and one sRNA gene, as well as five potential biosynthetic gene clusters, including clusters of genes coding for non-ribosomal peptide synthetase (NRPS), bacteriocin and arylpolyene and two clusters of genes for terpene. The predominant cellular fatty acids (> 10.0% of the total) in strain t3-1-3T were summed feature 3 (C16:1ω7c and/or C16:1ω6c, 37.8%), summed feature 8 (C18:1ω7c and/or C18:1ω6c, 29.7%) and C16:0 (17.3%). Strain t3-1-3T contained ubiquinone-8 (Q-8) as the predominant respiratory quinone. The polar lipids of strain t3-1-3T comprised phosphatidyl ethanolamine (PE), phosphatidyl glycerol (PG), diphosphatidyl glycerol (DPG), an unidentified glycolipid (GL), an unidentified aminophospholipid (APL), two unidentified phospholipid (PL1-2) and five unidentified lipid (L1-5). The DNA G + C content of the type strain is 70.3%. The broader range of growth temperature, assimilation of malic acid and trisodium citrate, presence of C18:3ω6c and an unidentified glycolipid and absence of C12:0 2-OH and C16:0iso differentiate strain t3-1-3T from related species. Based on the taxonomic data presented in this study, we suggest that strain t3-1-3T represents a novel species within the genus Azohydromonas, for which the name Azohydromonas aeria sp. nov. is proposed. The type strain of Azohydromonas aeria is t3-1-3T (= CFCC 13393T = LMG 30135T).

Journal of Microbiology : Journal of Microbiology
TOP