Search
- Page Path
-
HOME
> Search
Journal Articles
- Cytophaga hutchinsonii chu_2177, encoding the O-antigen ligase, is essential for cellulose degradation
-
Yahong Tan , Wenxia Song , Lijuan Gao , Weican Zhang , Xuemei Lu
-
J. Microbiol. 2022;60(4):364-374. Published online January 7, 2022
-
DOI: https://doi.org/10.1007/s12275-022-1531-3
-
-
19
View
-
0
Download
-
2
Citations
-
Abstract
- Cytophaga hutchinsonii can efficiently degrade crystalline
cellulose, in which the cell surface cellulases secreted by the
type IX secretion system (T9SS) play important roles, but
the degradation mechanism remains unclear, and the anchor
mechanism of cellulases on the outer membrane in C.
hutchinsonii has not been studied. Here, chu_2177 was identified
by transposon mutagenesis and was proved to be indispensable
for cellulose utilization in C. hutchinsonii. Disruption
of chu_2177 resulted in O-antigen deficiency and chu_
177 could confer O-antigen ligase activity upon an Escherichia
coli waal mutant, indicating that chu_2177 encoded the Ontigen
ligase. Moreover, deletion of chu_2177 caused defects
in cellulose utilization, cell motility, biofilm formation, and
stress resistance. Further study showed that the endoglucanase
activity was markedly decreased in the outer membrane
but was increased in the culture fluid without chu_2177.
Western blot proved that endoglucanase CHU_1336 was not
located on the outer membrane but was released in the culture
fluid of the Δ2177 mutant. Further proteomics analysis
showed that many cargo proteins of T9SS were missing in
the outer membrane of the Δ2177 mutant. Our study revealed
that the deletion of chu_2177 affected the localization of
many T9SS cargo proteins including cellulases on the outer
membrane of C. hutchinsonii.
- The effects of deletion of cellobiohydrolase genes on carbon source-dependent growth and enzymatic lignocellulose hydrolysis in Trichoderma reesei
-
Meibin Ren , Yifan Wang , Guoxin Liu , Bin Zuo , Yuancheng Zhang , Yunhe Wang , Weifeng Liu , Xiangmei Liu , Yaohua Zhong
-
J. Microbiol. 2020;58(8):687-695. Published online June 10, 2020
-
DOI: https://doi.org/10.1007/s12275-020-9630-5
-
-
19
View
-
0
Download
-
7
Citations
-
Abstract
- The saprophytic fungus Trichoderma reesei has long been used
as a model to study microbial degradation of lignocellulosic
biomass. The major cellulolytic enzymes of T. reesei are the
cellobiohydrolases CBH1 and CBH2, which constitute more
than 70% of total proteins secreted by the fungus. However,
their physiological functions and effects on enzymatic hydrolysis
of cellulose substrates are not sufficiently elucidated.
Here, the cellobiohydrolase-encoding genes cbh1 and cbh2
were deleted, individually or combinatively, by using an auxotrophic
marker-recycling technique in T. reesei. When cultured
on media with different soluble carbon sources, all three
deletion strains (Δcbh1, Δcbh2, and Δcbh1Δcbh2) exhibited
no dramatic variation in morphological phenotypes, but their
growth rates increased apparently when cultured on soluble
cellulase-inducing carbon sources. In addition, Δcbh1 showed
dramatically reduced growth and Δcbh1Δcbh2 could hardly
grew on microcrystalline cellulose (MCC), whereas all strains
grew equally on sodium carboxymethyl cellulose (CMC-Na),
suggesting that the influence of the CBHs on growth was carbon
source-dependent. Moreover, five representative cellulose
substrates were used to analyse the influence of the absence
of CBHs on saccharification efficiency. CBH1 deficiency
significantly affected the enzymatic hydrolysis rates of various
cellulose substrates, where acid pre-treated corn stover
(PCS) was influenced the least. CBH2 deficiency reduced the
hydrolysis of MCC, PCS, and acid pre-treated and delignified
corncob but improved the hydrolysis ability of filter paper.
These results demonstrate the specific contributions of
CBHs to the hydrolysis of different types of biomass, which
could facilitate the development of tailor-made strains with
highly efficient hydrolysis enzymes for certain biomass types
in the biofuel industry.
TOP