Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
2 "peptidoglycan"
Filter
Filter
Article category
Keywords
Publication year
Journal Articles
Cytophaga hutchinsonii chu_2177, encoding the O-antigen ligase, is essential for cellulose degradation
Yahong Tan , Wenxia Song , Lijuan Gao , Weican Zhang , Xuemei Lu
J. Microbiol. 2022;60(4):364-374.   Published online January 7, 2022
DOI: https://doi.org/10.1007/s12275-022-1531-3
  • 19 View
  • 0 Download
  • 2 Citations
AbstractAbstract
Cytophaga hutchinsonii can efficiently degrade crystalline cellulose, in which the cell surface cellulases secreted by the type IX secretion system (T9SS) play important roles, but the degradation mechanism remains unclear, and the anchor mechanism of cellulases on the outer membrane in C. hutchinsonii has not been studied. Here, chu_2177 was identified by transposon mutagenesis and was proved to be indispensable for cellulose utilization in C. hutchinsonii. Disruption of chu_2177 resulted in O-antigen deficiency and chu_ 177 could confer O-antigen ligase activity upon an Escherichia coli waal mutant, indicating that chu_2177 encoded the Ontigen ligase. Moreover, deletion of chu_2177 caused defects in cellulose utilization, cell motility, biofilm formation, and stress resistance. Further study showed that the endoglucanase activity was markedly decreased in the outer membrane but was increased in the culture fluid without chu_2177. Western blot proved that endoglucanase CHU_1336 was not located on the outer membrane but was released in the culture fluid of the Δ2177 mutant. Further proteomics analysis showed that many cargo proteins of T9SS were missing in the outer membrane of the Δ2177 mutant. Our study revealed that the deletion of chu_2177 affected the localization of many T9SS cargo proteins including cellulases on the outer membrane of C. hutchinsonii.
The effects of deletion of cellobiohydrolase genes on carbon source-dependent growth and enzymatic lignocellulose hydrolysis in Trichoderma reesei
Meibin Ren , Yifan Wang , Guoxin Liu , Bin Zuo , Yuancheng Zhang , Yunhe Wang , Weifeng Liu , Xiangmei Liu , Yaohua Zhong
J. Microbiol. 2020;58(8):687-695.   Published online June 10, 2020
DOI: https://doi.org/10.1007/s12275-020-9630-5
  • 19 View
  • 0 Download
  • 7 Citations
AbstractAbstract
The saprophytic fungus Trichoderma reesei has long been used as a model to study microbial degradation of lignocellulosic biomass. The major cellulolytic enzymes of T. reesei are the cellobiohydrolases CBH1 and CBH2, which constitute more than 70% of total proteins secreted by the fungus. However, their physiological functions and effects on enzymatic hydrolysis of cellulose substrates are not sufficiently elucidated. Here, the cellobiohydrolase-encoding genes cbh1 and cbh2 were deleted, individually or combinatively, by using an auxotrophic marker-recycling technique in T. reesei. When cultured on media with different soluble carbon sources, all three deletion strains (Δcbh1, Δcbh2, and Δcbh1Δcbh2) exhibited no dramatic variation in morphological phenotypes, but their growth rates increased apparently when cultured on soluble cellulase-inducing carbon sources. In addition, Δcbh1 showed dramatically reduced growth and Δcbh1Δcbh2 could hardly grew on microcrystalline cellulose (MCC), whereas all strains grew equally on sodium carboxymethyl cellulose (CMC-Na), suggesting that the influence of the CBHs on growth was carbon source-dependent. Moreover, five representative cellulose substrates were used to analyse the influence of the absence of CBHs on saccharification efficiency. CBH1 deficiency significantly affected the enzymatic hydrolysis rates of various cellulose substrates, where acid pre-treated corn stover (PCS) was influenced the least. CBH2 deficiency reduced the hydrolysis of MCC, PCS, and acid pre-treated and delignified corncob but improved the hydrolysis ability of filter paper. These results demonstrate the specific contributions of CBHs to the hydrolysis of different types of biomass, which could facilitate the development of tailor-made strains with highly efficient hydrolysis enzymes for certain biomass types in the biofuel industry.

Journal of Microbiology : Journal of Microbiology
TOP