Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
2 "prevalence"
Filter
Filter
Article category
Keywords
Publication year
Journal Articles
Eradication of drug-resistant Acinetobacter baumannii by cell-penetrating peptide fused endolysin
Jeonghyun Lim , Jaeyeon Jang , Heejoon Myung , Miryoung Song
J. Microbiol. 2022;60(8):859-866.   Published online May 25, 2022
DOI: https://doi.org/10.1007/s12275-022-2107-y
  • 23 View
  • 0 Download
  • 9 Citations
AbstractAbstract
Antimicrobial agents targeting peptidoglycan have shown successful results in eliminating bacteria with high selective toxicity. Bacteriophage encoded endolysin as an alternative antibiotics is a peptidoglycan degrading enzyme with a low rate of resistance. Here, the engineered endolysin was developed to defeat multiple drug-resistant (MDR) Acinetobacter baumannii. First, putative endolysin PA90 was predicted by genome analysis of isolated Pseudomonas phage PBPA. The His-tagged PA90 was purified from BL21(DE3) pLysS and tested for the enzymatic activity using Gram-negative pathogens known for having a high antibiotic resistance rate including A. baumannii. Since the measured activity of PA90 was low, probably due to the outer membrane, cell-penetrating peptide (CPP) DS4.3 was introduced at the N-terminus of PA90 to aid access to its substrate. This engineered endolysin, DS-PA90, completely killed A. baumannii at 0.25 μM, at which concentration PA90 could only eliminate less than one log in CFU/ml. Additionally, DS-PA90 has tolerance to NaCl, where the ~50% of activity could be maintained in the presence of 150 mM NaCl, and stable activity was also observed with changes in pH or temperature. Even MDR A. baumannii strains were highly susceptible to DS-PA90 treatment: five out of nine strains were entirely killed and four strains were reduced by 3–4 log in CFU/ml. Consequently, DS-PA90 could protect waxworm from A. baumannii-induced death by ~70% for ATCC 17978 or ~44% for MDR strain 1656-2 infection. Collectively, our data suggest that CPP-fused endolysin can be an effective antibacterial agent against Gramnegative pathogens regardless of antibiotics resistance mechanisms.
Promoter exchange of the cryptic nonribosomal peptide synthetase gene for oligopeptide production in Aspergillus oryzae
Chanikul Chutrakul , Sarocha Panchanawaporn , Sukanya Jeennor , Jutamas Anantayanon , Kobkul Laoteng
J. Microbiol. 2022;60(1):47-56.   Published online November 9, 2021
DOI: https://doi.org/10.1007/s12275-022-1442-3
  • 17 View
  • 0 Download
  • 7 Citations
AbstractAbstract
Oligopeptides with functional activities are of current interest in the nutraceutical and medical sectors. The development of the biosynthetic process of oligopeptides through a nonribosomal peptide synthetase (NRPS) system has become more challenging. To develop a production platform for nonribosomal peptides (NRPs), reprogramming of transcriptional regulation of the acv gene encoded ACV synthetase (ACVS) was implemented in Aspergillus oryzae using the CRISPRCas9 system. Awakening silent acv expression was successfully achieved by promoter substitution. Among the three exchanged promoters, AoPgpdA, AoPtef1, and PtPtoxA, the replacement of the native promoter with AoPgpdA led to the highest ACV production in A. oryzae. However, the ACV production of the AoPGpdA strain was also dependent on the medium composition, in which urea was the best nitrogen source, and a C:N ratio of 20:1 was optimal for tripeptide production. In addition to cell growth, magnesium ions are an essential element for ACV production and might participate in ACVS activity. It was also found that ACV was the growthassociated product of the engineered strain that might be a
result
of constitutive transcriptional control by the AoPgpdA promoter. This study offers a potential strategy for nonribosomal ACV production using the fungal system, which is applicable for redesigning bioactive oligopeptides with industrial relevance.

Journal of Microbiology : Journal of Microbiology
TOP