Search
- Page Path
-
HOME
> Search
Journal Articles
- Eradication of drug-resistant Acinetobacter baumannii by cell-penetrating peptide fused endolysin
-
Jeonghyun Lim , Jaeyeon Jang , Heejoon Myung , Miryoung Song
-
J. Microbiol. 2022;60(8):859-866. Published online May 25, 2022
-
DOI: https://doi.org/10.1007/s12275-022-2107-y
-
-
23
View
-
0
Download
-
9
Citations
-
Abstract
- Antimicrobial agents targeting peptidoglycan have shown
successful results in eliminating bacteria with high selective
toxicity. Bacteriophage encoded endolysin as an alternative
antibiotics is a peptidoglycan degrading enzyme with a low
rate of resistance. Here, the engineered endolysin was developed
to defeat multiple drug-resistant (MDR) Acinetobacter
baumannii. First, putative endolysin PA90 was predicted by
genome analysis of isolated Pseudomonas phage PBPA. The
His-tagged PA90 was purified from BL21(DE3) pLysS and
tested for the enzymatic activity using Gram-negative pathogens
known for having a high antibiotic resistance rate including
A. baumannii. Since the measured activity of PA90
was low, probably due to the outer membrane, cell-penetrating
peptide (CPP) DS4.3 was introduced at the N-terminus
of PA90 to aid access to its substrate. This engineered endolysin,
DS-PA90, completely killed A. baumannii at 0.25 μM,
at which concentration PA90 could only eliminate less than
one log in CFU/ml. Additionally, DS-PA90 has tolerance to
NaCl, where the ~50% of activity could be maintained in the
presence of 150 mM NaCl, and stable activity was also observed
with changes in pH or temperature. Even MDR A. baumannii
strains were highly susceptible to DS-PA90 treatment:
five out of nine strains were entirely killed and four strains
were reduced by 3–4 log in CFU/ml. Consequently, DS-PA90
could protect waxworm from A. baumannii-induced death
by ~70% for ATCC 17978 or ~44% for MDR strain 1656-2
infection. Collectively, our data suggest that CPP-fused endolysin
can be an effective antibacterial agent against Gramnegative
pathogens regardless of antibiotics resistance mechanisms.
- Promoter exchange of the cryptic nonribosomal peptide synthetase gene for oligopeptide production in Aspergillus oryzae
-
Chanikul Chutrakul , Sarocha Panchanawaporn , Sukanya Jeennor , Jutamas Anantayanon , Kobkul Laoteng
-
J. Microbiol. 2022;60(1):47-56. Published online November 9, 2021
-
DOI: https://doi.org/10.1007/s12275-022-1442-3
-
-
17
View
-
0
Download
-
7
Citations
-
Abstract
- Oligopeptides with functional activities are of current interest
in the nutraceutical and medical sectors. The development of
the biosynthetic process of oligopeptides through a nonribosomal
peptide synthetase (NRPS) system has become more
challenging. To develop a production platform for nonribosomal
peptides (NRPs), reprogramming of transcriptional
regulation of the acv gene encoded ACV synthetase (ACVS)
was implemented in Aspergillus oryzae using the CRISPRCas9
system. Awakening silent acv expression was successfully
achieved by promoter substitution. Among the three exchanged
promoters, AoPgpdA, AoPtef1, and PtPtoxA, the
replacement of the native promoter with AoPgpdA led to the
highest ACV production in A. oryzae. However, the ACV production
of the AoPGpdA strain was also dependent on the
medium composition, in which urea was the best nitrogen
source, and a C:N ratio of 20:1 was optimal for tripeptide production.
In addition to cell growth, magnesium ions are an
essential element for ACV production and might participate
in ACVS activity. It was also found that ACV was the growthassociated
product of the engineered strain that might be a
result
of constitutive transcriptional control by the AoPgpdA
promoter. This study offers a potential strategy for nonribosomal
ACV production using the fungal system, which is applicable
for redesigning bioactive oligopeptides with industrial
relevance.
TOP