Search
- Page Path
-
HOME
> Search
Journal Article
- Genome Sequencing Highlights the Plant Cell Wall Degrading Capacity of Edible Mushroom Stropharia rugosoannulata
-
Mengpei Guo , Xiaolong Ma , Yan Zhou , Yinbing Bian , Gaolei Liu , Yingli Cai , Tianji Huang , Hongxia Dong , Dingjun Cai , Xueji Wan , Zhihong Wang , Yang Xiao , Heng Kang
-
J. Microbiol. 2023;61(1):83-93. Published online February 1, 2023
-
DOI: https://doi.org/10.1007/s12275-022-00003-7
-
-
17
View
-
0
Download
-
3
Citations
-
Abstract
- The basidiomycetous edible mushroom Stropharia rugosoannulata has excellent nutrition, medicine, bioremediation, and
biocontrol properties. S. rugosoannulata has been widely and easily cultivated using agricultural by-products showing strong
lignocellulose degradation capacity. However, the unavailable high-quality genome information has hindered the research
on gene function and molecular breeding of S. rugosoannulata. This study provided a high-quality genome assembly and
annotation from S. rugosoannulata monokaryotic strain QGU27 based on combined Illumina-Nanopore data. The genome
size was about 47.97 Mb and consisted of 20 scaffolds, with an N50 of 3.73 Mb and a GC content of 47.9%. The repetitive
sequences accounted for 17.41% of the genome, mostly long terminal repeats (LTRs). A total of 15,726 coding gene
sequences were putatively identified with the BUSCO score of 98.7%. There are 142 genes encoding plant cell wall degrading
enzymes (PCWDEs) in the genome, and 52, 39, 30, 11, 8, and 2 genes related to lignin, cellulose, hemicellulose, pectin,
chitin, and cutin degradation, respectively. Comparative genomic analysis revealed that S. rugosoannulata is superior in
utilizing aldehyde-containing lignins and is possible to utilize algae during the cultivation.
TOP