The gut microbiome of captive primates can provide a window
into their health and disease status. The diversity and
composition of gut microbiota are influenced by not only
host phylogeny, but also host diet. Old World monkeys (Cercopithecidae)
are divided into two subfamilies: Cercopithecinae
and Colobinae. The diet and physiological digestive features
differ between these two subfamilies. Accordingly, highthroughput
sequencing was used to examine gut microbiota
differences between these two subfamilies, using data from
29 Cercopithecinae individuals and 19 Colobinae individuals
raised in captivity. Through a comparative analysis of operational
taxonomic units (OTUs), significant differences in the
diversity and composition of gut microbiota were observed
between Cercopithecinae and Colobinae. In particular, the gut
microbiota of captive Old World monkeys clustered strongly
by the two subfamilies. The Colobinae microbial diversity was
higher than that of Cercopithecinae. Additionally, Firmicutes,
Lactobacillaceae, Veillonellaceae, and Prevotella abundance
were higher in Cercopithecinae, while Bacteroidetes, Ruminococcaceae,
Christensenellaceae, Bacteroidaceae, and Acidaminococcaceae
abundance were higher in Colobinae. PICRUSt
analysis revealed that the predicted metagenomes of metabolic
pathways associated with proteins, carbohydrates, and
amino acids were significantly higher in Colobinae. In the
context of host phylogeny, these differences between Cercopithecinae
and Colobinae could reflect adaptations associated
with their respective diets. This well-organized dataset is a
valuable resource for future related research on primates and
gut microbiota. Moreover, this study may provide useful insight
into animal management practices and primate conservation.
Citations
Citations to this article as recorded by
Present status and trends of “ex situ” Cercopithecinae monkey populations worldwide D. Fraschetti, S. Gippoliti Journal for Nature Conservation.2024; 81: 126687. CrossRef
Assessment of Gut Microbiome Variations in the Mother and Twin Infant of Captive White-handed Gibbons (Hylobates lar) Reveals the Presence of Beneficial and Pathogenic Bacteria Badrul Munir Md-Zain, Siti Hajar Azmi, Roberta Chaya Tawie Tingga, Millawati Gani, Mohamad Khairulmunir, Abd Rahman Mohd-Ridwan Malaysian Applied Biology.2024; 53(3): 39. CrossRef
Isolation of Bacteria from Freeze-Dried Samples and the Functional Characterization of Species-Specific Lactic Acid Bacteria with a Comparison of Wild and Captive Proboscis Monkeys Nami Suzuki-Hashido, Sayaka Tsuchida, Akinori Azumano, Benoit Goossens, Diana A. Ramirez Saldivar, Danica J. Stark, Augustine Tuuga, Kazunari Ushida, Ikki Matsuda Microorganisms.2023; 11(6): 1458. CrossRef
Lineage-specific accelerated sequences underlying primate evolution Xupeng Bi, Long Zhou, Jin-Jin Zhang, Shaohong Feng, Mei Hu, David N. Cooper, Jiangwei Lin, Jiali Li, Dong-Dong Wu, Guojie Zhang Science Advances.2023;[Epub] CrossRef
β-mannanase supplemented in diets saved 85 to 100 kcal of metabolizable energy/kg, supporting growth performance and improving nutrient digestibility in grower pigs Jansller Luiz Genova, Liliana Bury de Azevedo, Paulo Evaristo Rupolo, Flávia Beatriz Carvalho Cordeiro, Hellen Lazarino Oliveira Vilela, Pedro Silva Careli, Damares de Castro Fidelis Toledo, Silvana Teixeira Carvalho, Marcos Kipper, Luciana Navajas Rennó, Scientific Reports.2023;[Epub] CrossRef
Description of Deefgea piscis sp. nov., and Deefgea tanakiae sp. nov., isolated from the gut of Korean indigenous fish Do-Hun Gim, So-Yeon Lee, Jeong Eun Han, Jae-Yun Lee, Seo Min Kang, Jin-Woo Bae Journal of Microbiology.2022; 60(11): 1061. CrossRef
The Gut Microbiota Composition of Cnaphalocrocis medinalis and Their Predicted Contribution to Larval Nutrition Chuanming Li, Guangjie Han, Jun Sun, Lixin Huang, Yurong Lu, Yang Xia, Qin Liu, Jian Xu Frontiers in Microbiology.2022;[Epub] CrossRef
The gut microbiota of gibbons across host genus and captive site in China Li‐Ying Lan, Yu‐Yan You, Qi‐Xuan Hong, Qun‐Xiu Liu, Chun‐Zhong Xu, Wu Chen, Ying‐Di Zhu, Xue‐Qing Du, Peng‐Fei Fan American Journal of Primatology.2022;[Epub] CrossRef
Fecal Bacterial Community of Allopatric Przewalski’s Gazelles and Their Sympatric Relatives Ruoshuang Liu, Jianbin Shi, Susanne Shultz, Dongsheng Guo, Dingzhen Liu Frontiers in Microbiology.2021;[Epub] CrossRef
Fecal bacterial communities of wild black capuchin monkeys (Sapajus nigritus) from the Atlantic Forest biome in Southern Brazil are divergent from those of other non-human primates Tiela Trapp Grassotti, Caroline Isabel Kothe, Janira Prichula, Nacer Mohellibi, Michele Bertoni Mann, Paulo Guilherme Carniel Wagner, Fabricio Souza Campos, Aline Alves Scarpellini Campos, Jeverson Frazzon, Ana Paula Guedes Frazzon Current Research in Microbial Sciences.2021; 2: 100048. CrossRef
Strain KSNA2T, a Gram-negative, moderately halophilic, facultatively
anaerobic, motile, rod-shaped bacterium, was isolated
from the surface-sterilized stem tissue of a beach morning
glory (Calystegia soldanella) plant in Chuja Island, Jejudo,
Republic of Korea. Phylogenetic analysis based on 16S
rRNA gene and whole-genome sequences revealed that strain
KSNA2T formed a distinct lineage within the family Enterobacteriaceae,
with the highest 16S rRNA gene sequence similarity
to Izhakiella australiensis KCTC 72143T (96.2%) and
Izhakiella capsodis KCTC 72142T (96.0%), exhibited 95.5–
95.9% similarity to other genera in the family Enterobacteriaceae
and Erwiniaceae. Conserved signature indels analysis
elucidated that strain KSNA2T was delimited into family
Enterobacteriaceae. KSNA2T genome comprises a circular
chromosome of 5,182,800 bp with 56.1% G + C content. Digital
DNA-DNA relatedness levels between strain KSNA2T
and 18 closely related species were 19.3 to 21.1%. Average
nucleotide identity values were between 72.0 and 76.7%.
Growth of strain KSNA2T was observed at 4 to 45°C (optimum,
25°C) and pH 5.0 to 12.0 (optimum, pH 7.0) in the
presence of 0 to 11% (w/v) NaCl (optimum, 0–7%). The major
cellular fatty acids (> 10%) were C16:0 followed by summed
feature 8 (C18:1 ω7c and/or C18:1 ω6c), summed feature
3 (C16:1 ω7c and/or C16:1 ω6c), C17:0 cyclo, and C14:0. The major
isoprenoid quinone was ubiquinone-8 (Q-8). With combined
phylogenetic, genomic, phenotypic, and chemotaxonomic
features, strain KSNA2T represents a novel species of
a new genus in the family Enterobacteriaceae, for which the
name Jejubacter calystegiae gen. nov., sp. nov. is proposed.
The type strain is KSNA2T (= KCTC 72234T = CCTCC AB
2019098T).
Citations
Citations to this article as recorded by
Pseudoxanthomonas sp. JBR18, a halotolerant endophytic bacterium, improves the salt tolerance of Arabidopsis seedlings Yuxin Peng, Lingmin Jiang, Doeun Jeon, Donghyun Cho, Youngmin Kim, Cha Young Kim, Ju Huck Lee, Jiyoung Lee Plant Physiology and Biochemistry.2024; 207: 108415. CrossRef
Two microbes assisting Miscanthus floridulus in remediating multi-metal(loid)s-contaminated soil Yunhua Xiao, Jingjing Ma, Rui Chen, Sha Xiang, Bo Yang, Liang Chen, Jun Fang, Shuming Liu Environmental Science and Pollution Research.2024; 31(20): 28922. CrossRef
Improving plant salt tolerance through Algoriphagus halophytocola sp. nov., isolated from the halophyte Salicornia europaea Yuxin Peng, Dong Hyun Cho, Zalfa Humaira, Yu Lim Park, Ki Hyun Kim, Cha Young Kim, Jiyoung Lee Frontiers in Microbiology.2024;[Epub] CrossRef
Detection of human pathogenic bacteria in rectal DNA samples from Zalophus californianus in the Gulf of California, Mexico Francesco Cicala, David Ramírez-Delgado, Ricardo Gómez-Reyes, Marcel Martínez-Porchas, Jorge Rojas-Vargas, Liliana Pardo-López, Alexei F. Licea-Navarro Scientific Reports.2022;[Epub] CrossRef
Genome Insights into the Novel Species Jejubacter calystegiae, a Plant Growth-Promoting Bacterium in Saline Conditions Ling Min Jiang, Yong Jae Lee, Ho Le Han, Myoung Hui Lee, Jae Cheol Jeong, Cha Young Kim, Suk Weon Kim, Ji Young Lee Diversity.2021; 13(1): 24. CrossRef
Pedobacter endophyticus sp. nov., an endophytic bacterium isolated from Carex pumila
Yuxin Peng, Lingmin Jiang, Jiyoon Seo, Zhun Li, Hanna Choe, Jae Cheol Jeong, Suk Weon Kim, Young-Min Kim, Cha Young Kim, Jiyoung Lee
International Journal of Systematic and Evolutionary Microbiology
.2021;[Epub] CrossRef
The Changing Face of the Family
Enterobacteriaceae
(Order: “
Enterobacterales
”): New Members, Taxonomic Issues, Geographic Expansion, and New Diseases and Disease Syndromes
J. Michael Janda, Sharon L. Abbott Clinical Microbiology Reviews.2021;[Epub] CrossRef