Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
5 "quantitative PCR"
Filter
Filter
Article category
Keywords
Publication year
Journal Article
Rab27b regulates extracellular vesicle production in cells infected with Kaposi’s sarcoma–associated herpesvirus to promote cell survival and persistent infection
Hyungtaek Jeon , Su-Kyung Kang , Myung-Ju Lee , Changhoon Park , Seung-Min Yoo , Yun Hee Kang , Myung-Shin Lee
J. Microbiol. 2021;59(5):522-529.   Published online April 20, 2021
DOI: https://doi.org/10.1007/s12275-021-1108-6
  • 46 View
  • 0 Download
  • 4 Web of Science
  • 4 Crossref
AbstractAbstract
Extracellular vesicles (EVs) play a crucial role in cell-to-cell communication. EVs and viruses share several properties related to their structure and the biogenesis machinery in cells. EVs from virus-infected cells play a key role in virus spread and suppression using various loading molecules, such as viral proteins, host proteins, and microRNAs. However, it remains unclear how and why viruses regulate EV production inside host cells. The purpose of this study is to investigate the molecular mechanisms underlying EV production and their roles in Kaposi’s sarcoma-associated herpesvirus (KSHV)-infected cells. Here, we found that KSHV induced EV production in human endothelial cells via Rab- 27b upregulation. The suppression of Rab27b expression in KSHV-infected cells enhanced cell death by increasing autophagic flux and autolysosome formation. Our results indicate that Rab27b regulates EV biogenesis to promote cell survival and persistent viral infection during KSHV infection, thereby providing novel insights into the crucial role of Rab- 27b in the KSHV life cycle.

Citations

Citations to this article as recorded by  
  • Engineered small extracellular vesicles as a novel platform to suppress human oncovirus-associated cancers
    Iman Owliaee, Mehran khaledian, Armin Khaghani Boroujeni, Ali Shojaeian
    Infectious Agents and Cancer.2023;[Epub]     CrossRef
  • HMGB1, a potential regulator of tumor microenvironment in KSHV-infected endothelial cells
    Myung-Ju Lee, Joohee Park, Seokjoo Choi, Seung-Min Yoo, Changhoon Park, Hong Seok Kim, Myung-Shin Lee
    Frontiers in Microbiology.2023;[Epub]     CrossRef
  • Alpha-2-macroglobulin as a novel diagnostic biomarker for human bladder cancer in urinary extracellular vesicles
    Jisu Lee, Hyun Sik Park, Seung Ro Han, Yun Hee Kang, Ji Young Mun, Dong Wook Shin, Hyun-Woo Oh, Yoon-Kyoung Cho, Myung-Shin Lee, Jinsung Park
    Frontiers in Oncology.2022;[Epub]     CrossRef
  • Long non-coding RNAs in Sus scrofa ileum under starvation stress
    Shu Wang, Yi Jia Ma, Yong Shi Li, Xu Sheng Ge, Chang Lu, Chun Bo Cai, Yang Yang, Yan Zhao, Guo Ming Liang, Xiao Hong Guo, Guo Qing Cao, Bu Gao Li, Peng Fei Gao
    Animal Bioscience.2022; 35(7): 975.     CrossRef
Research Support, Non-U.S. Gov'ts
A Real-Time qPCR Assay to Quantify Ophiocordyceps sinensis Biomass in Thitarodes Larvae
Wei Lei , Shaosong Li , Qingyun Peng , Guren Zhang , Xin Liu
J. Microbiol. 2013;51(2):229-233.   Published online April 27, 2013
DOI: https://doi.org/10.1007/s12275-013-2241-7
  • 41 View
  • 0 Download
  • 11 Scopus
AbstractAbstract
Ophiocordyceps sinensis, an entomogenous fungus parasitic in the larvae of moths (Lepidoptera), is one of the most valuable medicinal fungi, and it only distributed naturally on the Tibetan Plateau. The parasitical amount of O. sinensis in various tissues of the host Thitarodes larvae has an important role in study the occurrence and developmental mechanisms of O. sinensis, but there no an effective method to detect the fungal anamorph. A real-time quantitative PCR (qPCR) system, including a pair of species-specific ITS primers and its related program, was developed for O. sinensis assay with high reliability and efficiency. A calibration curve was established and exhibited a very good linear correlation between the fungal biomass and the CT values (R2=0.999419) by the qPCR system. Based on this method, O. sinensis was detected rapidly in four tissues of its host caterpillars, and the results were shown as following: the maximum content of O. sinensis parasitized in the fat-body, and next came bodywall; both of them were much larger than that observed in the haemolymph and intestinal-wall. Taken together, these
results
show that qPCR assays may become useful tools for study on developmental mechanism of O. sinensis.
Isolation, Characterization, and Abundance of Filamentous Members of Caldilineae in Activated Sludge
Dae-No Yoon , Soo-Je Park , So-Jeong Kim , Che Ok Jeon , Jong-Chan Chae , Sung-Keun Rhee
J. Microbiol. 2010;48(3):275-283.   Published online June 23, 2010
DOI: https://doi.org/10.1007/s12275-010-9366-8
  • 42 View
  • 0 Download
  • 49 Scopus
AbstractAbstract
Chloroflexi are currently believed to serve as backbone forming agents in the activated sludge of wastewater treatment plants (WWTPs). In this study, we isolated and characterized filamentous bacteria in the class Caldilineae of the phylum Chloroflexi in municipal WWTPs. Diversity analysis using Chloroflexi-specific 16S rRNA gene clone libraries showed that 97% of the clones belonged to the subdivision Anaerolineae comprising the two classes Anaerolineae (95%) and Caldilineae (2%). Clones of Caldilineae were related to a thermophilic filament Caldilinea aerophila with 93% 16S rRNA gene sequence similarity. We obtained filamentous isolates classified into the class Caldilineae showing the best match to C. aerophila with 89% 16S rRNA gene sequence similarity. Isolates showed no ability to assimilate glucose or N-acetylglucosamine or to degrade biopolymers which were observed in filamentous Chloroflexi of WWTPs. The assessment of relative abundance based on quantitative PCR of the 16S rRNA gene indicated that members of the class Caldilineae comprised 12-19% of the Chloroflexi in the activated sludge. Additionally, fluorescence in situ hybridization experiments showed that diverse filamentous Caldilineae inhabit the activated sludge of municipal WWTPs. These findings yield insight into the role of filamentous mesophilic Caldilinea in stabilizing flocs of activated sludge in a wide range of WWTPs.
Application of Quantitative Real-Time PCR for Enumeration of Total Bacterial, Archaeal, and Yeast Populations in Kimchi
Eun-Jin Park , Ho-Won Chang , Kyoung-Ho Kim , Young-Do Nam , Seong Woon Roh , Jin-Woo Bae
J. Microbiol. 2009;47(6):682-685.   Published online February 4, 2010
DOI: https://doi.org/10.1007/s12275-009-0297-1
  • 43 View
  • 0 Download
  • 37 Scopus
AbstractAbstract
Kimchi is a Korean traditional fermented food made of brined vegetables, with a variety of spices. Various microorganisms are associated with the kimchi fermentation process. This study was undertaken in order to apply quantitative real-time PCR targeting the 16S and 26S rRNA genes for the investigation of dynamics of bacterial, archaeal, and yeast communities during fermentation of various types of kimchi. Although the total bacterial and archaeal rRNA gene copy numbers increased during kimchi fermentation, the number of yeasts was not significantly altered. In 1 ng of bulk DNA, the mean number of rRNA gene copies for all strains of bacteria was 5.45×106 which was 360 and 50 times greater than those for archaea and yeast, respectively. The total gene copy number for each group of microorganisms differed among the different types of kimchi, although the relative ratios among them were similar. The common dominance of bacteria in the whole microbial communities of various types of kimchi suggests that bacteria play a principal role in the kimchi fermentation process.
Monitoring 4-Chlorobiphenyl-Degrading Bacteria in Soil Microcosms by Competitive Quantitative PCR
Soo Youn Lee , Min Sup Song , Kyung Man You , Bae Hoon Kim , Seong Ho Bang , In Soo Lee , Chi Kyung Kim , Yong Keun Park
J. Microbiol. 2002;40(4):274-281.
  • 35 View
  • 0 Download
AbstractAbstract
The competitive quantitative PCR method targeting pcbC gene was developed for monitoring 4-chlorobiphenyl(4CB)-degrading bacteria, Pseudomonas sp. strain DJ-12, in soil microcosms. The method involves extraction of DNA from soil contaminated with 4CB, PCR amplification of a pcbC gene fragment from the introduced strain with a set of strain-specific primers, and quantification of the electrophoresed PCR product by densitometry. To test the adequacy of the method, Pseudomonas sp. Strain DJ-12 was introduced into both contaminated and non-contaminated soil microcosms amended with 4CB. Pseudomonas sp. strain DJ-12 was monitored and quantified by a competitive quantitative PCR in comparison with 4CB degradation and the result was compared to those obtained by using the conventional cultivation method. We successfully detected and monitored 4CB-degrading bacteria in each microcosm and found a significant linear relationship between the number of 4CB-degrading bacteria and the capacity for 4CB biodegradation. The results of DNA spiking and cell-spreading experiments suggest that this competitive quantitative PCR method targeting the pcbC gene for monitoring 4Cbdegrading bacteria appears to be rapid, sensitive and more suitable than the microbiological approach in estimating the capacity of 4CB biodegradation in environmental samples.

Journal of Microbiology : Journal of Microbiology
TOP