Systemic candidiasis, which is mainly caused by Candida albicans,
is a serious acute fungal infection in the clinical setting.
In a previous study, we reported that compound 22h (designated
as AB-22 in this study), a vinyl sulfate compound, is a
fast-acting fungicidal agent against a broad spectrum of fungal
pathogens. In this study, we aimed to further analyze the
in vitro and in vivo efficacy of AB-22 against filamentation,
biofilm formation, and virulence of C. albicans. Under in vitro
hyphal growth-inducing condition, AB-22 effectively inhibited
germ tube formation and hyphal growth, which are required
for the initiation of biofilm formation. Indeed, AB-22
significantly suppressed C. albicans biofilm formation in a
dose-dependent manner. Moreover, AB-22 treatment inhibited
the normal induction of ALS3, HWP1, and ECE1, which
are all required for hyphal transition in C. albicans. Furthermore,
AB-22 treatment increased the survival of mice systemically
infected with C. albicans. In conclusion, in addition
to its fungicidal activity, AB-22 inhibits filamentation and
biofilm formation in C. albicans, which could collectively contribute
to its potent in vivo efficacy against systemic candidiasis.
Citations
Citations to this article as recorded by
Preparation and analysis of quinoa active protein (QAP) and its mechanism of inhibiting Candida albicans from a transcriptome perspective Xufei Zhang, Chunmei Zheng, Wenxuan Ge, Xueying Li, Xiuzhang Wang, Yanxia Sun, Xiaoyong Wu PeerJ.2025; 13: e18961. CrossRef