Search
- Page Path
-
HOME
> Search
Journal Article
- The Viable But Nonculturable State of Kanagawa Positive and Negative Strains of Vibrio parahaemolyticus
-
Tonya C. Bates , James D. Oliver
-
J. Microbiol. 2004;42(2):74-79.
-
DOI: https://doi.org/2042 [pii]
-
-
Abstract
- Ingestion of shellfish-associated Vibrio parahaemolyticus is the primary cause of potentially severe gastroenteritis in many countries. However, only Kanagawa phenomenon (hemolysin) positive (KP^+) strains of V. parahaemolyticus are isolated from patients, whereas >99% of strains isolated from the environment do not produce this hemolysin (i.e. are KP^-). The reasons for these differences are not known. Following a temperature downshift, Vibrio parahaemolyticus enters the viable but nonculturable (VBNC) state wherein cells maintain viability but cannot be cultured on routine microbiological media. We speculated that KP^+ and KP^- strains may respond differently to the temperature and salinity conditions of seawater by entering into this state which might account for the low numbers of culturable KP^+ strains isolated from estuarine waters. The response of eleven KP^+ and KP^- strains of V. parahaemolyticus following exposure to a nutrient and temperature downshift in different salinities, similar to conditions encountered in their environment, was examined. The strains included those from which the KP^+ genes had been selectively removed or added. Our results indicated that the ability to produce hemolysin did not affect entrance into the VBNC state. Further, VBNC cells of both biotypes could be restored to the culturable state following an overnight temperature upshift.
- The Viable but Nonculturable State in Bacteria
-
James D. Oliver
-
J. Microbiol. 2005;43(1):93-100.
-
-
-
Abstract
- It had long been assumed that a bacterial cell was dead when it was no longer able to grow on routine culture media. We now know that this assumption is simplistic, and that there are many situations where a cell loses culturability but remains viable and potentially able to regrow. This mini-review defines what the "viable but nonculturable" (VBNC) state is, and illustrates the methods that can be used to show that a bacterial cell is in this physiological state. The diverse environmental factors which induce this state, and the variety of bacteria which have been shown to enter into the VBNC state, are listed. In recent years, a great amount of research has revealed what occurs in cells as they enter and exist in this state, and these studies are also detailed. The ability of cells to resuscitate from the VBNC state and return to an actively metabolizing and culturable form is described, as well as the ability of these cells to retain virulence. Finally, the question of why cells become nonculturable is addressed. It is hoped that this mini-review will encourage researchers to consider this survival state in their studies as an alternative to the conclusion that a lack of culturability indicates the cells they are examining are dead.
TOP